Without doubt, renewable energy is on a roll. Denmark is producing 43% of its energy from renewables, and it aims for 70% by 2020. Germany, at more than 25% now and 30% soon, is going for 40% to 45% clean power by 2025, 55% to 60% by 2035, and an incredible 80% by 2050. China, despite many challenges, is the world’s leading source of renewable investment, as well as the largest solar manufacturer.
The United States, with about 13% renewable energy generation, has some catching up to do, though California (where some developers are incorporating solar into every house they build) points the way forward. The Solar Energy Industries Association reports that the solar market in the U.S. grew by 41% in 2013, and that it made up 20% of all new generating capacity in that year.
Both solar and wind are making strides. A global Bloomberg survey predicted that solar will grow more than 20% internationally in 2014 (as it did between 2012 and 2013). And the Global Wind Energy Council projects that 2014 will be a very good year internationally for wind as well, with dramatic increases over 2013 and at least 47 gigawatts of wind installed around the world.
Room for Growth
But all this positive movement could obscure the fact that renewable energy is still a very small part of the mix both in the U.S. and globally. The big percentage increases start from a small base (even with its rapid growth, solar is still less than 1% of generation in the U.S., and the official consensus is that the world will run on fossil fuel energy for the foreseeable future). The International Energy Agency’s “World Energy Outlook 2013” reports, “Today’s share of fossil fuels in the global mix, at 82%, is the same as it was 25 years ago; the strong rise of renewables only reduces this to around 75% in 2035.”
Renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050. –National Renewable Energy Lab
Business as usual is also predicted for the U.S. The U.S. Energy Information Administration (EIA) does envision a gradual emissions reduction through energy-efficiency and the use of renewables. The agency said, “Improved efficiency of energy use in the residential and transportation sectors and a shift away from more carbon-intensive fuels such as coal for electricity generation help to stabilize U.S. energy-related carbon dioxide (CO2) emissions.” But the agency’s projections of electricity generation by fuel to 2040 still show overwhelming dominance by natural gas, nuclear energy and coal. At the most, renewable energy could achieve parity with nuclear power, but remain well below the agency’s projections for natural gas and coal. Today’s low oil prices are another challenge to the rise of renewables.
What’s Theoretically Possible
According to Sarbjit Nahal, head of thematic investing in the global strategy division of Bank of America Merrill Lynch, and Beijia Ma, a principal in the group, significant changes are needed to advance renewable sources of energy. The UN’s Intergovernmental Panel on Climate Change (IPCC) said in a late 2014 report, “Continued emission of greenhouse gases will cause further warming and long-lasting changes in all components of the climate system, increasing the likelihood of severe, pervasive and irreversible impacts.” Because of a 40% increase in demand in energy by 2035, they say, we’re “on a carbon dioxide (CO2) emissions trajectory consistent with global temperature increases of two to 4.5 degrees Centigrade, making irreversible climate change a reality.”
They’re hardly alone in this assessment. “A new world energy economy is emerging,” said Lester Brown, president of Earth Policy Institute. “Our civilization needs to embrace renewable energy on a scale and at a pace we’ve never seen before.”
And it’s at least theoretically possible. A study by the National Renewable Energy Lab (NREL) concluded, “Renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the country.”
Under a rapid expansion program, the world could have nearly five million megawatts of wind power by 2020, Brown said. He added, “Combined with an ambitious solar and geothermal expansion, along with new hydro projects in the pipeline, this would total 7.5 million megawatts of renewable generating capacity, enabling us to back out all the coal and oil and most of the natural gas now used to generate electricity.”
Mark Jacobson, a civil and environmental engineering professor at Stanford, and Mark Delucchi, a research scientist at the University of California, Davis’s Institute of Transportation Studies, have devised an ambitious scenario for a renewable energy takeover. “Our plan calls for millions of wind turbines, water machines and solar installations,” they wrote in Scientific American. “The numbers are large, but the scale is not an insurmountable hurdle; society has achieved massive transformations before.”
Specifically, their global plan imagines 3.8 million large wind turbines, 90,000 utility-scale solar plants, 490,000 tidal turbines, 5,350 geothermal installations and 900 hydroelectric plants. They estimate that the cost of generating power with this network would be less per kilowatt-hour than generating it with fossil fuels or nuclear power.
Other plans concur. “It is technically possible to achieve almost 100% renewable energy sources within the next four decades,” concludes the World Wildlife Federation’s (WWF) 2011 Energy Report, which sees wind, solar, biomass and hydropower as the future major players. “Energy derived from the sun, the wind, the earth’s heat, water and the sea has the potential to meet the world’s electricity needs many times over, even allowing for fluctuations in supply and demand.”
The WWF report estimates that a million onshore and 100,000 offshore wind turbines could meet a quarter of the world’s energy demand by 2050.
Moving Past Coal
Experts believe that to keep global temperatures from rising more than two degrees Celsius from pre-industrial levels, a goal of the Copenhagen Accord, the world’s energy emissions have to peak by 2020 and then quickly decline, reaching near-zero by approximately 2050.
One of the often-cited obstacles to achieving this goal is the world’s reliance on coal for both power and jobs. According to Charles Mann in The Atlantic, coal causes 25% more emissions than oil globally, but cleaning up the sector may not be as difficult as it first appears. Forty percent of the world’s climate emissions come from just 7,000 coal plants. And coal attrition is already happening. The Energy Information Administration reports that the combination of lower-cost natural gas and strong EPA standards for power plants is taking a toll. Not a single coal plant was opened in the U.S. in the first half of the year, and coal was only 39% of U.S. electricity generation in 2013, compared to more than 50% in 2004. The EIA reports that a big flurry of coal closings is expected by 2016.
Uncertainty resulting from intermittent renewables can be reduced by ramping up grid interconnections, enabling load sharing. –Abyd Karmali
The ongoing decline in coal has already lowered employment in the U.S. industry, lessening fears that a low-carbon future will kill jobs. So too has increased efficiency. Due in part to widespread mountaintop removal mining, which employs far fewer workers than underground mining, U.S. coalfield employment has slipped from more than 280,000 jobs in 1978 to less than 100,000 today—even as coal production increased in the same period to nearly a billion tons.
The global picture is complex. Although coal production internationally is still increasing robustly, and the International Energy Agency sees demand growth of 2.1% annually through 2019, employment — at seven million jobs worldwide — has seen some losses. According to the Worldwatch Institute’s Vital Signs, “Many hundreds of thousands of coal mining jobs have been shed in China, the United States, Germany, the United Kingdom and South Africa during the last couple of decades, sometimes in the face of escalating production.”
Renewable power is already helping to compensate for coal industry job loss, with the Solar Foundation reporting 142,698 jobs in that industry in 2013, up nearly 20% from 2012. Global wind power could employ 2.1 million in 2030, at which time solar photovoltaics could have created another 6.3 million jobs.
Worldwide renewable energy employs 2.3 million people, either directly or in feeder industries, in part, says NREL’s “Dollars and Sense” report, because the technology is labor-intensive (more jobs per dollar invested than conventional electric power). Overall, the Center for American Progress (CAP) estimates that making a 40% cut in greenhouse gas from 2005 levels by 2035 would create 4.2 million overall jobs, with 2.7 million net when “estimated contractions in fossil fuel sectors” are factored in. CAP said the overall effect would be a 1.5% reduction in the unemployment rate.
Despite reductions in coal use and projected increases in clean-energy employment, China’s reliance on coal remains a formidable obstacle. Coal produces 70% of China’s energy, and almost four billion tons were burned there in 2012 — a major reason that China has become the world’s largest greenhouse gas emitter. From 2005 to 2011, China (with vast natural coal reserves) added the equivalent of two 600-megawatt plants every week, and from 2010 through 2013, it added coal plants roughly equal to half of all U.S. generation. (At the same time, China is committed to renewable energy — with hydropower included, it’s already at 20%, compared to 13% in the U.S. But demand is rising and so is production: China is planning to double its power-generating capacity by 2030.)
Technology and regulatory hurdles persist
The intermittency of wind and solar power remains a major hurdle, one that’s addressed by Jacobson and Delucchi. To tackle intermittency in renewable energy resources, Jacobson proposes interconnecting geographically dispersed wind, solar and water resources (through a smart grid), and where possible using hydro power to fill in supply gaps. He also advocates demand-response management, over-sizing peak generation (and producing hydrogen with the excess), and storing electric power on site (in batteries) or in grid-connected electric cars.
Abyd Karmali, managing director, climate finance, at Bank of America Merrill Lynch, agreed that uncertainty resulting from intermittent renewables can be reduced by ramping up grid interconnections, enabling load sharing. “Also having the right mix is key, such as using hydroelectric for baseline power where possible,” he said. “And, of course, it’s also a misconception to say that only renewable energy suffers from volatility — fossil fuel plants get knocked out for various reasons, and that’s not predicted in advance.”
Daniel Esty, director of the Yale Center for Environmental Law and Policy, believes that better battery storage — a holy grail for scientists worldwide — is the key to solving the intermittency problem.
According to Arthur van Benthem, assistant professor of business economics and public policy at the University of Pennsylvania’s Wharton School, current regulatory policy presents another critical obstacle to a low-carbon future. “Incentives for demand response such as real-time pricing for end users are often lacking, but would be instrumental to shift consumption from peak to off-peak hours.” In addition, says van Benthem, “The renewable industry will be at a persistent disadvantage as long as we don’t remove the elephant in the room: the fossil fuel electricity sector should pay the full social cost of their operations. In plain English, we need a carbon tax.”
A Ground-level View
Some countries are already working toward phasing out fossil fuels, with Germany being the most prominent example. The country, which gets 15% of its energy from nuclear power now, wants to phase it out by 2021 — with help from legislation such as the Renewable Energy Sources Act, which provides feed-in tariffs and other financial support. And its goal is to supply 80% of its electricity from renewables by 2050.
In the first quarter of 2014, clean sources produced 27% of Germany’s electricity, with 40.2 billion kilowatt-hours of generation. Nearly half of all new electricity generation in Europe is wind or solar, said George Washington University’s GW Solar Institute. But among the challenges to Germany’s success are power-price surcharges that have raised utility bills for some (and led to unrest among German manufacturers), and at least short-term increases in coal use and imports of renewables are ramped up.
“The easiest way to reduce our large-scale carbon footprint is to become a lot more efficient, and there is still a lot of low-hanging fruit that businesses are beginning to recognize.” –Eric Orts
Germany’s renewable portfolio is about double the 13% in the U.S., and Europe’s commitment to a 40% carbon cut by 2030 will ratchet up its efforts substantially. Still, some states get a large percentage of their energy from renewables, often because of large hydro-electric resources.
The U.S. Energy Information Administration expects that electricity generation from renewable sources will increase to 16% in 2040. Renewable portfolio standards (which set percentage goals for renewable energy) are operating in 30 states (plus the District of Columbia), and form a significant incentive if they’re heeded.
Corporations are also in the lead. Renewable energy is already providing power for 94% of Apple’s corporate operations. Walmart launched on-site solar for its American operations in 2005, and made its first major wind power agreement in Mexico the next year. By 2013, Walmart had 335 renewable energy projects worldwide, producing 2.2 billion kilowatt-hours annually and meeting nearly a quarter of the company’s energy needs. Walmart’s goal is to reach seven billion kilowatt-hours and be close to 100% renewable by the end of 2020.
Smaller companies, too, are making important strides. Steve Melink of Milford, Ohio, founded Melink Corporation, originally a HVAC testing firm, in 1987. In 2004, he attended a green building conference and had a “moment of inspiration. It opened my eyes that we were not on a sustainable path.” Today, Melink has deployed more than 100 strategies to get to its current net-zero energy status. In fact, the company’s embrace of sustainability led it to create a lucrative new business in solar leasing, including installation of two three-megawatt systems in Indianapolis and the $12 million 1.56-megawatt solar canopy system it recently built over the parking lot at the Cincinnati Zoo. According to Sophia Cifuentes, the zoo’s sustainability coordinator, having the solar system has resulted in 50 days a year that are effectively off the grid.
The Challenge of Getting There
Transportation is actually the fastest growing source of CO2 globally, and as such can offset the gains from installed renewable energy. The world car population topped one billion in 2011, and the International Transport Forum thinks it could reach 2.5 billion by 2050. Clearly, that’s not a sustainable number. Daniel Sperling, founding director of the Institute of Transportation Studies at the University of California, Davis, believes that the 87 million barrels of oil produced globally each day could climb to 120 million barrels under that scenario.
The transition to electric vehicles has the potential to blunt the oil consumption and climate impacts of the world’s cars, but there’s a long way to go. In the U.S. in 2014, 119,710 plug-in vehicles were sold out of 16.5 million total, and the numbers are smaller around the world. Electric cars are currently expensive, but with battery prices dropping, their momentum is likely to increase. Lower-cost (and longer range) cars, which cost much less to operate than conventional cars, will be attractive to buyers globally. Lowering emissions becomes a virtuous circle when the power running zero-emission electric cars comes from plants fueled by renewable energy.
Making cars more energy-efficient, as in the U.S. goal of 54.5 mpg fleet averages by 2025, is important, as is moving away from cars altogether. Mass transit is key, but other innovative urban policy is also pointing the way forward: The U.S. remains highly auto-centric, but cities such as Helsinki and Hamburg in Europe have ambitious, technology-aided, plans to go car-free or as close to it as possible. In place of private cars will be telephone-dispatched bus services, ride sharing, municipal bicycles and multiple rail options.
Virtually all the experts agree that the transition to a clean energy economy will be difficult. Carl Pope, the former executive director of the Sierra Club, points out that if clean energy investments result in a 5% reduction in global fossil fuel demand, the law of supply and demand would result in a sharp 25% to 30% drop in fossil fuel prices, increasing non-renewables’ appeal to consumers.
Robert Giegengack, professor emeritus of earth and environmental science in the School of Arts and Sciences at the University of Pennsylvania, agrees the transition won’t be easy, “but it is inevitable.”
Moving to renewables could take as long as 100 years, Esty said. Eric Orts, the director of Wharton’s Initiative for Global Environmental Leadership (IGEL) and a law professor at the University of Pennsylvania, also sees a fairly hard road ahead, but it’s an achievable goal. “I don’t think it’s an easy transition at all,” he said. “But I do think it’s possible, and we definitely need to move in that direction.”
Orts adds, “Even with wind and solar, it’s not simply zero emission — there are manufacturing costs, mining and maintenance issues. It should be said that the movement toward renewables has to be coupled with energy-efficiency efforts. The easiest way to reduce our large-scale carbon footprint is to become a lot more efficient, and there is still a lot of low-hanging fruit that businesses are beginning to recognize.”
Join The Discussion
5 Comments So Far
Nick Tedesco
I believe that we can remain optimistic that the world can be powered by sources of renewable energy. In fact, this is our only sustainable solution as fossil fuels are finite. We can look forward to a rapid transition to renewables because both wind and solar power have surpassed grid parity.
Nick Tedesco
http://solar-power-now.com
James Henson
One disadvantage with renewable energy is that it is difficult to generate the quantities of electricity that are as large as those produced by traditional fossil fuel generators. This may mean that we need to reduce the amount of energy we use or simply build more energy facilities. It also indicates that the best solution to our energy problems may be to have a balance of many different power sources.
________________
http://www.everythingauto.com.au/company/Rent-2-own-Cars-Australia
Anumakonda Jagadeesh
Interesting article.
Renewables at best can supplement conventional energy like coal,petroleum,gas etc. especially in high energy intensive countries like US,Germany,Japan etc.
The limitations of Renewables like Wind and Solar is their intermittent nature which requires storage. Storage of power is expensive. Though Solar PV cost is coming down ,its efficiency is still around 15% at field level. Dust is a big problem in developing countries for wider application of Solar PV. CSP may be a good alternative.
I have had been advocating Bioenergy as the best option for Developing countries in view of vast waste land and huge man power. There is the case of Ethanol in Brazil. In the debate between Food Vs Fuel and subsidies for Ethanol production in US(Sugarcane),I am advocating Bioenergy from Care-free Growth,regenerative CAM plants like Agave and Opuntia. These can be input for Biofuel/biogaspower/biocahar in Developing countries in Africa,Latin America and Asia. What is more being CAM plants their massive plantation will act as ‘Carbon Sink’. Moreover these plants have multiple uses. Mexico is pioneer in this.
The endeavor to use 100% renewable energy for electricity, heating and cooling, and transport is motivated by global warming, pollution and other environmental issues, as well as economic and energy security concerns. Shifting the total global primary energy supply to renewable sources requires a transition of the energy system. In 2013 the Intergovernmental Panel on Climate Change said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown much faster than even advocates anticipated.
In 2014, renewable sources such as wind, geothermal, solar, biomass, and burnt waste provided 19% of the total energy consumed worldwide, with roughly half of that coming from traditional use of biomass. The most important sector is electricity with a renewable share of 22.8%, most of it coming from hydropower with a share of 16.6%, followed by wind with 3.1%. There are many places around the world with grids that are run almost exclusively on renewable energy. At the national level, at least 30 nations already have renewable energy contributing more than 20% of the energy supply.
Professors S. Pacala and Robert H. Socolow of Princeton University have developed a series of “Climate stabilization wedges” that can allow us to maintain our quality of life while avoiding catastrophic climate change, and “renewable energy sources,” in aggregate, constitute the largest number of their “wedges.”
Mark Z. Jacobson, professor of civil and environmental engineering at Stanford University and director of its Atmosphere and Energy program, says that producing all new energy with wind power, solar power, and hydropower by 2030 is feasible, and that existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be “primarily social and political, not technological or economic”. Jacobson says that energy costs today with a wind, solar, and water system should be similar to today’s energy costs from other optimally cost-effective strategies. The main obstacle against this scenario is the lack of political will.
Similarly, in the United States, the independent National Research Council has noted that “sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand.”
The main barriers to the widespread implementation of large-scale renewable energy and low-carbon energy strategies are political rather than technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.
Renewable energy use has grown much faster than even advocates had anticipated. Wind turbines generate 39 percent of Danish electricity, and Denmark has many biogas digesters and waste-to-energy plants as well. Together, wind and biomass provide 44% of the electricity consumed by the country’s six million inhabitants. In 2010, Portugal’s 10 million people produced more than half their electricity from indigenous renewable energy resources. Spain’s 40 million inhabitants meet one-third of their electrical needs from renewable(Wikipedia)..
The first country to propose 100% renewable energy was Iceland, in 1998. Proposals have been made for Japan in 2003, and for Australia in 2011. Albania, Iceland, and Paraguay obtain essentially all of their electricity from renewable sources (Albania and Paraguay 100% from hydroelectricity, Iceland 72% hydro and 28% geothermal). Norway obtains nearly all of its electricity from renewable sources (97 percent from hydropower). Iceland proposed using hydrogen for transportation and its fishing fleet. Australia proposed biofuel for those elements of transportation not easily converted to electricity. The road map for the United States, commitment by Denmark, and Vision 2050 for Europe set a 2050 timeline for converting to 100% renewable energy, later reduced to 2040 in 2011. Zero Carbon Britain 2030 proposes eliminating carbon emissions in Britain by 2030 by transitioning to renewable energy. In 2015, Hawaii enacted a law that the Renewable Portfolio Standard shall be 100 percent by 2045. This is often confused with renewable energy. If electricity produced on the grid is 65 GWh from fossil fuel and 35 GWh from renewable energy and rooftop off grid solar produces 80 GWh of renewable energy then the total renewable energy is 115 GWh and the total electricity on the grid is 100 GWh. Then the RPS is 115 percent.
The Fourth Revolution: Energy is a German documentary film released in 2010. It shows the vision of a global society, which lives in a world where the energy is produced 100% with renewable energies, showing a complete reconstruction of the economy, to reach this goal. In 2011, Hermann Scheer wrote the book The Energy Imperative: 100 Percent Renewable Now, published by Routledge.
Reinventing Fire is a book by Amory Lovins released in October 2011. By combining reduced energy use with energy efficiency gains, Lovins says that there will be a $5 trillion saving and a faster-growing economy. This can all be done with the profitable commercialization of existing energy-saving technologies, through market forces, led by business. Bill Clinton says the book is a “wise, detailed and comprehensive blueprint”. The first paragraph of the preface says:
Imagine fuel without fear. No climate change. No oil spills, dead coal miners, dirty air, devastated lands, lost wildlife. No energy poverty. No oil-fed wars, tyrannies, or terrorists. Nothing to run out. Nothing to cut off. Nothing to worry about. Just energy abundance, benign and affordable, for all, for ever.
The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. In a 2011 review of 164 recent scenarios of future renewable energy growth, the report noted that the majority expected renewable sources to supply more than 17% of total energy by 2030, and 27% by 2050; the highest forecast projected 43% supplied by renewables by 2030 and 77% by 2050.[
In 2011, the International Energy Agency has said that solar energy technologies, in its many forms, can make considerable contributions to solving some of the most urgent problems the world now faces:
The development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared.
In 2011, the refereed journal Energy Policy published two articles by Mark Z. Jacobson, a professor of engineering at Stanford University, and research scientist Mark A. Delucchi, about changing our energy supply mix and “Providing all global energy with wind, water, and solar power”. The articles analyze the feasibility of providing worldwide energy for electric power, transportation, and heating/cooling from wind, water, and sunlight (WWS), which are safe clean options. In Part I, Jacobson and Delucchi discuss WWS energy system characteristics, aspects of energy demand, WWS resource availability, WWS devices needed, and material requirements. They estimate that 3,800,000 5 MW wind turbines, 5350 100 MW geothermal power plants, and 270 new 1300 MW hydroelectric power plants will be required. In terms of solar power, an additional 49,000 300 MW concentrating solar plants, 40,000 300 MW solar photovoltaic power plants, and 1.7 billion 3 kW rooftop photovoltaic systems will also be needed. Such an extensive WWS infrastructure could decrease world power demand by 30%.[42] In Part II, Jacobson and Delucchi address variability of supply, system economics, and energy policy initiatives associated with a WWS system. The authors advocate producing all new energy with WWS by 2030 and replacing existing energy supply arrangements by 2050. Barriers to implementing the renewable energy plan are seen to be “primarily social and political, not technological or economic”. Energy costs with a WWS system should be similar to today’s energy costs.
In general, Jacobson has said wind, water and solar technologies can provide 100 per cent of the world’s energy, eliminating all fossil fuels. He advocates a “smart mix” of renewable energy sources to reliably meet electricity demand:
More recently, Jacobson and his colleagues have developed detailed proposals for switching to 100% renewable energy produced by wind, water and sunlight, for New York, California and Washington states, by 2050. As of 2014, a more expansive new plan for the 50 states has been drawn up, which includes an online interactive map showing the renewable resource potential of each of the 50 states. The 50-state plan is part of The Solutions Project, an independent outreach effort led by Jacobson, actor Mark Ruffalo, and film director Josh Fox.
As of 2014, many detailed assessments show that the energy service needs of a world enjoying radically higher levels of wellbeing, can be economically met entirely through the diverse currently available technological and organisational innovations around wind, solar, biomass, biofuel, hydro, ocean and geothermal energy. Debate over detailed plans remain, but transformations in global energy services based entirely around renewable energy are in principle technically practicable, economically feasible, socially viable, and so realisable. This prospect underpins the ambitious commitment by Germany, one of the world’s most successful industrial economies, to undertake a major energy transition, Energiewende.
In 2015 a study was published in Energy and Environmental Science that describes a pathway to 100% renewable energy in the United States by 2050 without using biomass. Implementation of this roadmap is regarded as both environmentally and economically feasible and reasonable, as by 2050 it would save about $600 Billion Dollars health costs a year due to reduced air pollution and $3.3 Trillion global warming costs. This would translate in yearly cost savings per head of around $8300 compared to a business as usual pathway. According to that study, barriers that could hamper implementation are neither technical nor economic but social and political, as most people didn’t know that benefits from such a transformation far exceeded the costs.
Dr.A.Jagadeesh Nellore(AP),India
Renewable Energy Expert
Recipient
Margaret Noble Foundation Seattle Award in Energy Technology.
u m
One of the disadvantages of renewable energy sources is that it is difficult to generate as much electricity as is generated by traditional fossil fuel generators. This may mean that we need to reduce the amount of energy consumed or simply build more energy facilities. It also indicates that the best solution to our energy problems may be a balance between many different energy sources. Solar companies in the world are gaining huge recognition, and their production is skyrocketing. If we talk about Pakistan, Overall report highlights that investment in the renewable energy sector in Pakistan has doubled over the past five years and the some of the top leading solar energy companies in its Karachi city are Electrosoft Technologies , Reon Energy LTD, Sky Electric, and Pakistan Solar Solutions.
u m
The fossil fuels that we’re currently dependent on for much of our energy consumption — among them, coal, natural gas, and oil — are not renewable resources. It’s been a common fact for quite some time that when we exhaust these resources, we won’t be able to produce any more. Still, with that being said, many regard renewable energy as a subpar and less dependable energy source than our go-to fossil fuels. Solar companies in the world are gaining huge recognition, and their production is skyrocketing. If we talk about Pakistan, Overall report highlights that investment in the renewable energy sector in Pakistan has doubled over the past five years and the some of the top leading solar energy companies in its Karachi city are Electrosoft Technologies , Reon Energy LTD, Sky Electric, and Pakistan Solar Solutions.