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We study queue abandonment from a hospital emergency department. We show that abandonment is not

only in�uenced by wait time, but also by the queue length and the observable queue �ows during the waiting

exposure. For example, observing an additional person in the queue or an additional arrival to the queue

leads to an increase in abandonment probability equivalent to a �fteen minute or nine minute increase in

wait time respectively. We also show that patients are sensitive to being "jumped" in the line and that

patients respond di�erently to people more sick and less sick moving through the system. This customer

response to visual queue elements is not currently accounted for in most queuing models. Additionally, to

the extent the visual queue information is misleading or does not lead to the desired behavior, managers

have an opportunity to intervene by altering what information is available to waiting customers.
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1. Introduction

The body of knowledge on queuing theory is voluminous and spans almost a century of research.

However, one of the least understood aspects of queuing theory is human behavior in the queue.

Understanding the human element is crucial in designing and managing service-system queues such

as quick-serve restaurants, retail checkout counters, call centers, and emergency departments.

Speci�cally, queue abandonment (also known as reneging) is one aspect of human behavior that

is poorly understood. Abandonment is undesirable in most service settings because it leads to a

combination of lost revenue and ill-will. In a hospital emergency department, abandonment takes on

the added dimension of the risk of a patient su�ering an adverse medical event. While the hospital

may not be legally responsible for such an event, it is certainly an undesirable outcome.

Prior literature has explored psychological responses to waiting and has generally found that

people are happier and waiting seems less onerous when people are kept informed of why they

are waiting and how long the wait will last (Hui and Tse 1996). Given these �ndings, it seems

almost trivial that it is bene�cial to provide waiting customers with as much information as possible
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about the wait. In practice, however, many service systems, such as call centers and emergency

departments, which provide limited or no information to waiting customers. One reason for this

is that uninformed customers might naively estimate the waiting time to be short and thus join a

queue which they would not join if they were informed about the expected waiting time. Sharing

information with customers about the queue status is an active area of analytical queuing theory

research (e.g. Armony et al. 2009, Plambeck and Wang 2012). Yet, there exists limited empirical

work studying how queue status information a�ects customers. An exception to this is the recent

work by Lu et al. (2012), which provides evidence that even in a simple queuing system in which all

information is fully observable and customers are served in their order of arrivals, customers might

not use the available information rationally.

The empirical setting of our work is a hospital emergency department (ED). In this setting,

waiting patients can observe the waiting room but they cannot observe the service-delivery portion

of the system (the treatment rooms). Additionally, even though patients can observe the waiting

room, it is not at all clear what they can learn from what they observe. Factors such as arrival

order, priority level, assignment to separate service channels, and the required service time of others

are not readily apparent. Interestingly, most American EDs provide no queue-related information

to the patients. The position of the American College of Emergency Physicians is that providing

queue information might have �unintended consequences� and lead to patients who need care leaving

without treatment (ACEP 2012). However, this position does not account for how patients respond

to the information they do have: what they see.

In this paper, we focus on how what patients observe and experience over the course of the waiting

exposure impacts their abandonment decisions. Using detailed timestamp data of 180,000 patient

visits that we obtained from the ED's electronic patient tracking system, we are able to reconstruct a

set of variables that patients should rationally have considered in their decision whether to abandon

the queue when they were in the waiting room. Our theoretical framework hypothesizes that patients

observe and consider two types of variables, stock variables and �ow variables. Stock variables are

those that describe the number of other patients in the waiting room, such as the total number of

patients, the total number of patients with a higher priority, or the total number of patients with a

later arrival time. Flow variables are those that describe the rate with which the queue is depleted

as well as the rate with which new patients arrive, such as the number of arrivals in the last hour,

the number of departures in the last hour, or the number of patients that have been served in the

last hour before patients who had an earlier arrival time. Some of these variables can be directly

observed by the patient, while others have to be inferred. For example, the number of patients in

the waiting room is directly observable to the patient, while, given that the priority data is not

shared with all patients, the number of patients in the waiting room with a high priority score can
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only be inferred. This novel approach towards predicting and estimating abandonment behavior of

ED patients allows us to make the following four contributions:

1. We �nd that for patients of moderate severity, observing an additional patient in the queue

increases the probability of abandonment by half a percentage point, even when appropriately

controlling for wait time. This is equivalent to a 15 minute increase in wait time and extends the

prior result of Lu et al. (2012) from a deli counter to an emergency room.

2. We show that the observed �ow of patients in and out of the waiting room has an e�ect on

abandonment, with arrivals leading to increased abandonment and departures leading to decreased

abandonment. Given the unknown priority of newly arriving patients, the patients in the waiting

room are more likely to abandon the queue when new patients arrive after them, as they fear being

overtaken by these new arrivals. Regarding departures, we show that patients respond di�erently to

out�ows that maintain �rst-come-�rst-served order and those that do not. For example, observing

an additional waiting room departure that maintains �rst-come-�rst-served order reduces the prob-

ability of abandonment by 0.6 percentage points, equivalent to a 19 minute reduction in wait time.

In contrast, observing an additional waiting room departure that violates �rst-come-�rst-served has

an insigni�cant impact on abandonment.

3. We show that patients respond to more than just the �facts� that they observe. They make

inferences about the severity of other patients and respond di�erently to the �ow of more and less

severe patients. For example, we �nd that observing an additional arrival of a patient sicker than

oneself increases the probability of abandonment by one percentage point whereas observing the

arrival of a patient less sick than oneself has no discernible e�ect on abandonment. Further, we show

that patients are quite adept at making these relative severity inferences.

4. We show that early initiation of a service task, such as diagnostic testing, reduces abandonment.

For example, receiving an order for a diagnostic test during the triage process reduces the probability

of abandonment by 1.8 percentage points. This is particularly interesting because unlike the other

variables examined in this paper, early service initiation does not impact the waiting time.

These contributions show that patient abandonment behavior is a�ected by the waiting patients

experience while in the waiting room. Thus, a queue is not either visible (like in a grocery store) or

invisible (like in a call center), but often times combines aspects of both. In such settings, providing

no information to customers does not mean that customers are without queue information. Further,

to the extent the visual queue information is misleading or does not lead to the desired behavior,

managers have an opportunity to intervene by altering what information is available to the patients.

For example, providing separate waiting rooms for di�erent triage levels would reduce abandonment

due to observing a crowded waiting room and due to obscuring arrivals of higher priority patients.
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2. Clinical Setting

Our study is based on data from a large, urban, teaching hospital with an average of 4,700 ED

visits per month over the study period of January, 2009 through December, 2011. The ED has 25

treatment rooms and 15 hallway beds for a theoretical maximum treatment capacity of 40 beds.

However, the actual treatment capacity at any given moment can �uctuate for various reasons. The

hospital also operates an express lane or FastTrack (FT) for low acuity patients. The FT is generally

open from 8am to 8pm on weekdays, and from 9am to 6pm on weekends. The FT operates somewhat

autonomously from the rest of the ED in that it utilizes seven dedicated beds and is usually sta�ed

by a dedicated group of Certi�ed Registered Nurse Practitioners rather than Medical Doctors.

We focus solely on patients that are classi�ed as �walk-ins� or �self� arrivals, as opposed to

ambulance, police, or helicopter arrivals. This is because the walk-ins go through a more standardized

process of triage, waiting, and treatment, as described below. In contrast, ambulance arrivals tend

to jump the queue for bed placement, regardless of severity, and often do not go through the triage

process or wait in the waiting room. More than 70% of ED arrivals are walk-ins.

The study hospital operates in a manner similar to many hospitals across the United States (Batt

and Terwiesch 2013). Upon arrival, patients are checked in by a greeter and an electronic patient

record is initiated for that visit. Only basic information (name, age, complaint) is collected at

check-in. Shortly thereafter, the patient is seen by a triage nurse who assesses the patient, measures

vital signs, and records the o�cial chief complaint. The triage nurse assigns a triage level, which

indicates acuteness, using the �ve-level Emergency Severity Index (ESI) triage scale with 1 being

most severe and 5 being least severe (Gilboy et al. 2011). The triage nurse also has the option of

ordering diagnostic tests, for example an x-ray or a blood test. Patients are generally not informed

of their assigned triage level nor are they given any queue status information.

After triage, patients wait in a single waiting room to be called for service. Patients are in no

way visibly identi�ed, thus a waiting patient does not know what triage level other patients have

been assigned. Further, patients can sit anywhere in the waiting room, thus there is no ready visual

signal of arrival order. There is no queue status information posted in the waiting room.

Patients are called for service when a treatment bed is available. If only the ED is open, patients

are generally (but not strictly) called for service in �rst-come-�rst-served (FCFS) order by triage

level. If the FT is open, then the FT will serve triage level 4 and 5 patients in FCFS order by triage

level and the ED will serve patients of triage levels 1 through 3 in FCFS order by triage level. These

routing procedures are �exible, however. For example, the ED might serve a triage level 4 patient if

the patient has been waiting a long time and there are not more acute patients that need immediate

attention. Similarly, the FT might serve a triage level 3 patient if the patient has been waiting a

long time and the patient's needs can be met by the nurse practitioners in the FT.
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Most patients likely have little or no understanding that the ED and FT coexist and work as

separate service channels. Further, since patients go through the same doors to begin service in

either the ED or the FT, there is no visual indication to the remaining waiting patients as to which

service channel a patient has been assigned.

Once a patient is called for service, a nurse escorts the patient to a treatment room and the

treatment phase of the visit begins. When treatment is complete, the patient is either admitted to

the hospital or discharged to go home. If a patient is not present in the waiting room when called

for service, that patient is temporarily skipped and is called again later, up to three times. If the

patient is not present after a third call, the patient is considered to have abandoned, the patient

record is classi�ed as Left Without Being Seen (LWBS), and is closed out. The time until a record

is closed out as LWBS is usually quite long, with a mean time of over four hours (about triple the

mean wait time for those who remain). Note that a patient is free to abandon the ED at any time.

However, for this study, we focus solely on abandonment that occurs before room placement.

3. Literature Review

The classical queuing theory approach to modeling queue abandonment is the Erlang-A model �rst

introduced by Baccelli and Hebuterne (1981). In the Erlang-A model, each customer has a maximum

time she is willing to wait, and she waits in the queue until she either enters service or reaches her

maximum wait time, at which point she abandons the queue. The maximum wait times are usually

assumed to be i.i.d. draws from some distribution, commonly the exponential (Gans et al. 2003).

Examples of work using the Erlang-A model include Brown et al. (2005) and Mandelbaum and

Momcilovic (2012). Modeling abandonment in this way provides analytical tractability, but does

not shed light on the actual drivers of customer behavior.

An alternative view of queue abandonment is based on customer utility maximization. In such

models, customers are assumed to be forward-looking and balance the expected reward from service

completion against the expected waiting costs. Thus, there are generally three terms of interest

in these models: the reward for service, the instantaneous unit waiting cost, and the estimated

residual waiting time (Mandelbaum and Shimkin 2000, Aksin et al. 2012). Some models also include

a discount rate, which adds a fourth term of interest.

One of the key �ndings from this body of literature is that abandoning the queue is not rational

in many M/M/c type queues (Hassin and Haviv 2003). However, since this conclusion does not

match well with observation of real queuing systems, there is a rich literature of studies which

modify the basic queue model to generate rational abandonments. For example, Haviv and Ritov

(2001) and Shimkin and Mandelbaum (2004) consider the case of nonlinear waiting costs leading to

abandonment. Mandelbaum and Shimkin (2000) considers customer abandonment from a system
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with a possible �fault state� in which service will never be initiated. Such a fault state can occur in

an overloaded multi-class queue, such as in an ED. If the arrival rate of high priority customers is

large enough, the queue becomes unstable for low priority customers and the wait goes to in�nity

(Chan et al. 2011). See Hassin and Haviv (2003) for a review of assumptions that lead to rational

abandonments.

Another possibility is that customers are boundedly rational, meaning that there is some error in

their estimation of the cost of waiting. Bounded rationality has been studied in several settings, as

reviewed by Gino and Pisano (2008). Huang et al. (2012) examines how bounded rationality a�ects

the queue joining decision and Kremer and Debo (2012) �nds evidence of bounded rationality in

queue joining in laboratory experiments. To the best of our knowledge, bounded rationality has not

been studied in regard to queue abandonment.

A related avenue of active queuing research addresses queues with various levels of information.

Much of this work is motivated by the call-center industry and determining what information a

call center should provide to its customers. For example, Guo and Zipkin (2007) compare M/M/1

queue performance when no, partial, and full information is revealed. They �nd that providing infor-

mation always either improves throughput or customer utility, but not necessarily both. Similarly,

Jouini et al. (2009) and Armony et al. (2009) both examine the impact of delay announcements on

abandonment behavior in multi-server, invisible queues and �nd that providing more information

can improve system performance with little customer loss. Plambeck and Wang (2012) shows that

if customers exhibit time-inconsistent preferences through hyperbolic discounting, then hiding the

queue may be welfare maximizing while being suboptimal for the service provider.

The question of what to tell waiting customers has also been explored. Many papers have focused

on developing wait time estimators under various queuing disciplines that can be used to provide

customers credible information (e.g, Whitt 1999, Ibrahim and Whitt 2011). Given an estimated wait

time distribution, Jouini et al. (2011) explores what value from the wait time distribution should be

provided to the customer to balance the customers' balking probability with the provider's desire

for high throughput. Allon et al. (2011) considers the �what the to tell customers� question under

the assumption of strategic behavior by both customers and providers.

There are many studies from a variety of �elds that identify drivers of queue abandonment.

While they generally do not explicitly mention the three terms of the utility function, they can be

mapped to this framework to aid in understanding their contributions and di�erences. For example,

Larson (1987) discusses such issues as perceived queue fairness and waiting before or after service

initiation, both of which likely impact expected residual time. Janakiraman et al. (2011) studies the

psychological phenomena of goal commitment and increasing �pain� of waiting which are equivalent

to increasing service reward and increasing waiting costs respectively in the utility framework. Bitran
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et al. (2008) provides a survey of other such �ndings from the marketing and behavioral studies

domains.

The medical literature contains several empirical studies on drivers of abandonment from emer-

gency departments. Demographic factors (e.g., age, income, and race), institutional factors (e.g.,

hospital ownership and the presence of medical residents), and operational factors (e.g., utilization

level) have all been shown to in�uence patient abandonment (Hobbs et al. 2000, Polevoi et al. 2005,

Pham et al. 2009, Hsia et al. 2011).

While there are several recent empirical Operations Management papers dealing with queuing

systems in the healthcare setting (e.g., Batt and Terwiesch 2013, Berry Jaeker and Tucker 2012,

Chan et al. 2012), none have focused on queue abandonment. There are, however, two recent papers

that study queue abandonment empirically, one in a call center and one at a deli. Aksin et al.

(2012) uses a structural model to estimate the underlying service reward and waiting cost values for

customers calling into a bank call center. Under assumptions of an invisible queue, linear waiting

costs, and known exogenous hazard functions, the study �nds that customers are heterogeneous in

their parameter values and that ignoring the endogenous nature of abandonment decisions may lead

to misleading results in various queuing models. Our work di�ers from Aksin et al. (2012) in terms of

both setting and methodology. Our study setting is a semi-visible, multi-class queue (in the ED, the

waiting room is visible but the clinical treatment area is not) as compared to an invisible multi-class

queue. In terms of methodology, to estimate the latent structural parameters, Aksin et al. (2012)

imposes strong structural assumptions (e.g. known common hazard function, linear waiting costs,

past time is sunk, etc.). In contrast, we are not estimating any structural parameters and thus we

use reduced form models which require fewer structural assumptions.

Lu et al. (2012) examines how aspects of a visible queue, such as queue length and number

of servers, a�ect customer purchase behavior at a grocery deli counter. One of the key �ndings

of this paper is that customers are in�uenced by line length but are largely immune to changes

in the number of servers, even though the number of servers has a large impact on wait time.

Stated di�erently, customers are boundedly rational in that they do not appropriately incorporate

all available information into their balk or abandon decisions.

Our work di�ers from Lu et al. (2012) in several ways. First, our setting is more complex. Lu

et al. (2012) examines a fully visible, single-class, FCFS queue as compared to the semi-visible,

multi-class queue in the ED. Second, because our data are richer and more detailed than in Lu et al.

(2012) we are able to examine a broader set of questions regarding queue behavior and we can do

so with fewer inferences about the customer experience. For example, Lu et al. (2012) must infer if

a customer observed the queue, when a customer observed the queue, and what was the length of

the queue observed. In contrast, our data allow us to know both when a patient entered the queue
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and what was the queue length at that moment. Further, we observe the dynamics of the queue

during the waiting experience including arrivals, departures, and the patient mix. Thus we are able

to not only con�rm the key result of Lu et al. (2012) regarding queue length, but we are also able to

examine how the observed �ow and fairness of the queue impacts the abandonment decision. Thus,

we believe our work serves to expand the understanding of the behavior of customers waiting in

line.

4. Framework & Hypotheses

The primary purpose of this study is to determine to what extent the visible aspects of the queue

impact the abandonment decision. In the ED, just because the hospital does not provide queue

status information does not mean that the patients are completely without queue status information.

Patients can observe the number of people in the waiting room and the �ow of patients in and

out of the waiting room. Understanding the impact of these visual cues on abandonment will help

identify possible ways to in�uence abandonment behavior by manipulating the information available

to waiting patients. We intentionally do not address the issue of whether abandonment is good or

bad. That depends on the hospital's objective function and de�ning that is beyond the scope of

this paper. However, we provide a few thoughts on the issue in the discussion section of the paper

(Section 9).

We now develop a theory of how patients respond to visible queue elements. Abstracting from

the optimal stopping problem formulation of Aksin et al. (2012), we assume that the abandonment

decision is the result of a patient repeatedly evaluating the following personal utility function:

Utility = max

[
E
[(

Service
Reward

)
−
(

Wait
Cost

)
×
(

Residual
Wait

)]
,0

]
(1)

The service reward is the utility gained from receiving treatment. The wait cost is the disutility

incurred for each unit of wait time. The residual wait is the time remaining until service is com-

menced. While all three terms of the utility function may have some uncertainty or may change over

the course of the waiting exposure, we are most interested in the formation of the expected residual

wait time as this is the term that is most clearly a�ected by the queue evolution. Any information

that increases the expected residual wait will increase the probability of the patient abandoning.

Also following Aksin et al. (2012), we assume that past waiting costs are sunk and are irrelevant

for future decisions.

Given that the hospital provides no information regarding the residual wait, the waiting experience

itself is the only source of information that should impact the residual wait estimate. We categorize

the visible queue information into four classes of variables created by the permutations of two pairs

of classi�cations: stocks and �ows, and observed and inferred (Figure 1). The key �stock� of interest
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Figure 1 Visible Queue State Variables
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is the waiting room census, while the key ��ows� are the arrivals and departures from the waiting

room. By �observed� and �inferred� we mean that some things can be objectively observed, such as

the number of arrivals to the ED, while others can only be inferred, such as the number of patients

in the waiting room with a higher triage classi�cation than one's own.

Quadrant 1 of Figure 1 contains the only observed stock variable: Census. This waiting room

census is the �rst, and perhaps most salient, visual cue that a waiting patient observes. If patients

behave according to the Erlang-A model, such that wait time is the only determinant of abandon-

ment, then waiting room census should have no impact on abandonment, controlling for wait time.

However, if patients behave in a utility maximizing way, then increasing waiting room census likely

increases the patient's residual time estimate and abandonment probability (Guo and Zipkin 2007).

This leads to our �rst hypothesis:

Hypothesis 1 Controlling for wait time, abandonment increases with waiting room census.

This relationship between census (queue length) and queue balking/abandoning behavior is the

focus of Lu et al. (2012). We compare our results with Lu et al. (2012) in the sequel.

Quadrant 2 lists the observed �ow variables: Arrivals and two types of Departures (nonjump

and jump, de�ned below). At our study hospital, arrivals and departures are quite easy to observe

if a patient chooses to do so. There is a single entry door for walk-in patients, and there is a

single door that leads into the clinical treatment area. If the ED were a pure �rst-come �rst-served

(FCFS) system, then one would expect arrivals to have little or no e�ect on abandonment. However,

since the ED is a priority-based system, new arrivals may well jump the line and be served before

currently waiting patients. Therefore, arrivals may cause waiting patients to adjust their residual

time estimate upward leading to more abandonment.

Hypothesis 2A Abandonment increases with observed arrivals.

We de�ne departures from the waiting room to include only departures to begin treatment (we

address abandonments later). Patients that observe a high departure rate may take this as a signal
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that the system is moving quickly and therefore adjust their residual time estimate downward,

leading to less abandonment. However, if a departure is a �jump,� that is Patient A arrives before

Patient B but Patient B enters service before Patient A, then this provides a mixed signal to Patient

A. It signals system speed, which presumably reduces the residual time estimate. However, the jump

departure does not move Patient A any closer to service, and thus the reduction in residual time

estimate is less than for a regular departure. There may also be a psychological e�ect on Patient A

if Patient A views the jump as unfair. This would increase the (psychological) waiting cost in the

utility function and cause Patient A to be more likely to abandon. These possibilities lead to the

following two hypotheses.

Hypothesis 2B Abandonment decreases with observed departures.

Hypothesis 2C Jump departures decrease abandonment less than nonjump departures.

Note that what we refer to as a �jump� is equivalent to what Larson (1987) terms a �slip� and Whitt

(1984) terms �overtaking.�

The above hypotheses consider the patient response to observable stock and �ow variables. We

now consider how patient inferences might modify behavior. While patients may not have a full

understanding of the ED queuing system, they are likely aware that the ED operates on a priority

basis rather than a FCFS basis. In fact, there are multiple placards in the waiting room explaining

this point. Thus, patients may recognize that the presence of sicker patients can impact their wait

time di�erently than less sick patients. However, since all patient information is kept con�dential,

patients can only infer the relative priority of those around them in the waiting room. Certainly,

this is an inexact process at best, but likely not a pointless endeavor.

As we consider the variables shown in Quadrants 3 and 4, we want to determine if patients are

able to di�erentiate between those who are ahead of and behind them in the priority queue and if

this a�ects their behavior. While we leave the precise de�nitions of the Quadrant 3 and 4 variables

to Section 5, the general principle is that each variable is split into two parts. One part measures

those who are ahead in line according to the priority queue scheme and the other part measures

those who are behind the given patient according to the priority queue scheme. A fully informed,

rational patient would respond only to those ahead of them in the queue since those behind them

should not impact the patient's wait time. For example, observing a larger number of patients in the

waiting room of equal or higher priority than an arriving patient (Census Ahead) should increase

abandonment (assuming Hypothesis 1 is true) while the number of people of lower priority (Census

Behind) should have no e�ect on abandonment at all. However, since patients can only infer the

priority of others, they may make some classi�cation errors and react to those behind them in the

queue. Therefore we state our hypotheses in terms of comparing the e�ects of the ahead and behind

variables.
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Hypothesis 3 Abandonment increases more with the census of those ahead in the priority queue

than it does with the census of those behind in the priority queue.

Hypothesis 4A Abandonment increases more with arrivals of those ahead in the priority queue than

it does with arrivals of those behind in the priority queue.

Hypothesis 4B For departures that maintain arrival order (nonjump departures), abandonment de-

creases more with departures of those ahead in the priority queue than it does with those behind

in the priority queue

Hypothesis 4C For departures that violate arrival order (jump departures), abandonment decreases

more with departures of those ahead in the priority queue than it does with those behind in the

priority queue.

For each of these four preceding hypotheses, the null hypothesis is that the e�ect of the ahead and

behind variables is equal. This would occur if patients are unable to reliably distinguish the relative

queue position of the other waiting patients.

While the above hypotheses focus on visual queue elements impacting the expected residual wait

time and hence the abandonment behavior, another factor that potentially impacts the residual

wait time estimate is the patient experience. Speci�cally, early initiation of diagnostic testing at

triage may in�uence abandonment. Being assigned a test by the triage nurse may lead to a patient

perceiving herself as being of relatively high priority and thus having a lower residual wait time.

There could also be a psychological e�ect, as hypothesized by Maister (1985), that the perception

of wait time is shorter once the patient perceives service to have started. This leads to our �nal

hypothesis:

Hypothesis 5 Abandonment decreases with triage testing.

5. Data Description, De�nitions, & Study Design

We now describe the dataset and de�ne the key variables. In the discussion below, the index t

indicates an 15-minute interval in the study period, the index T indicates the patient triage level,

and the index i denotes a patient visit to the ED, not a speci�c patient. Note that some patients

do have multiple visits, and we control for this with clustered standard errors (described in detail

in Section 6). Further, because we estimate all models for each triage class separately, the index i

is actually an index within the triage class.

Our data include patient level information on over 180,000 patient visits to the ED including

demographics, clinical information, and timestamps. Patient demographics include age, gender, and

insurance classi�cation (private, Medicare, Medicaid, or none). Clinical information includes pain

level on a 1 to 10 scale (10 being most severe), chief complaint as recorded by the triage nurse, and

a binary variable indicating if the patient had any diagnostic tests, such as labs or x-rays, ordered
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at triage. Timestamps include time of arrival, time of placement in a treatment room, and time of

departure from the ED. Table 1 provides descriptive statistics of the patient population by triage

level. We do not study ESI 1 patients because these patients do not abandon. However, we do

include ESI 1 patients in all relevant census measures in the analysis.

Table 1 Summary Statistics

ESI 2 ESI 3 ESI 4 ESI 5
Age 49.8 39.0 34.7 34.2

(0.11) (0.07) (0.07) (0.14)
%Female 54% 66% 58% 51%

(0.003) (0.002) (0.002) (0.005)
Pain (1-10) 4.5 5.5 5.4 4.1

(0.03) (0.02) (0.02) (0.04)
%FastTrack 2% 3% 68% 67%

(0.001) (0.001) (0.002) (0.005)
Wait Time(hr.) 1.0 1.9 1.3 1.3

(0.01) (0.01) (0.01) (0.01)
Service Time(hr.) 3.7 4.0 1.8 1.2

(0.02) (0.01) (0.01) (0.01)
Census at Arrival 13.9 11.7 11.9 11.4

(0.06) (0.04) (0.05) (0.09)
%LWBS 1.7% 9.5% 4.7% 7.4%

(0.001) (0.001) (0.001) (0.003)
N 27,538 65,773 39,878 10,509
Means shown. Standard error of mean in parentheses

Empirical analysis on customer abandonment is often confounded by censored or missing data.

Ideally, one would observe each customer's willingness to wait and the actual wait time if she stayed.

However, only the minimum of these two is ever realized (actual wait time or actual abandonment

time), leading to censored data. In the study hospital, abandonment times are not observed, leading

to missing data for all patients who abandon. We know neither when they left, nor how long their

wait would have been had they stayed for service. We address this missing data problem in two

ways. In Section 7.1 we follow Zohar et al. (2002) and take averages across time to estimate the

system waiting time. In Section 7.2 we use the wait times of similar patients who arrived in temporal

proximity to create an estimated o�ered wait time for those who abandon.

For the regression models, we are interested in how the o�ered wait time impacts the abandon-

ment decision. The o�ered wait is the wait time had the patient remained for service (Mandelbaum

and Zeltyn 2013). For patients who do remain, this is their actual wait (WAITi), which we cal-

culate directly from the timestamps. For patients who abandon, we must estimate their o�ered

wait (ŴAIT i). We do this by calculating the average of the wait times of the two chronologically

adjacent patients (one before and one after) who did not abandon . To get a sense of the accuracy
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of the estimated o�ered wait time ŴAIT i, we examine the deviation between ŴAITi and WAITi

for all patients that did not abandon. The deviation has a mean of 0.00 and a standard deviation

of 1.1 hours. 50% of the values are are between ±0.3hours, and more than 80% of the values are

between ±1hour. Thus, ŴAIT i appears to be unbiased, and is relatively close to the true value.

We then de�ne the o�ered wait time as follows

OWAITi =

{
WAITi if patient stays

ŴAIT i if patientabandons
(2)

To calculate the waiting room census measure, we divide the study period into 15-minute

intervals labeled t, and we use the patient visit timestamps to generate the census variable

INTERV AL_CENSUSt as the number of patients in the waiting room during interval t. We

also decompose the census measure into the waiting room census of each of the �ve ESI triage

classes (INTERV AL_CENSUSt,T , T ∈ {1,2,3,4,5}). We assign a census value to each patient

(CENSUSi) based on the time of arrival. For example, for patient i who arrives at time interval

t, CENSUSi = INTERV AL_CENSUSt. We likewise create the variable BEDSi as the number

ED treatment beds in use, which is the number of patients in the treatment phase of the visit.

In order to test Hypothesis 3, we would ideally decompose CENSUSi into those patients whom

patient i perceives to be more sick and less sick than herself. However, since these perceptions are

not observed by the econometrician, we proxy for them by using the triage classi�cation of the

waiting patients to calculate the census of those ahead of and behind patient i assuming a priority

queue system without preemption that serves patients on a FCFS basis within a priority level.

Therefore, any waiting patient of equal or higher priority (lower ESI number) is considered as ahead

of the arriving patient (CENSUS_AHEADi), and any waiting patient of lower priority (higher

ESI number) is considered as behind the arriving patient (CENSUS_BEHINDi). We emphasize

that these variables are de�ned for each patient relative to the given patient's own triage level. For

example, for an ESI 3 patient, patients in the waiting room of ESI levels 1 through 3 are counted

in the CENSUS_AHEADi variable and patients of ESI levels 4 and 5 would be counted in the

CENSUS_BEHINDi variable.

The �ow variables needed to test Hypotheses 2A,B,C and 4A,B,C are constructed based on the

patient timestamps. For each patient visit we calculate the number of arrivals (ARRIV Ei) and

departures (DEPARTi) that occur within one hour of patient i's arrival. Further, we create alter-

native departure variables NONJUMPi and JUMPi based on whether the departing patient(s)

arrived before or after patient i respectively. As with the census variable, we also decompose the �ow

variables by triage level (ARRIV Ei,T , DEPARTi,T , NONJUMPi,T , JUMPi,T , T ∈ {1,2,3,4,5}).
We split each �ow variable into two parts as follows based on those ahead and behind the given

patient according to the priority queuing scheme.
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• ARRIV E_AHEADi: Arriving patients with higher priority than patient i

• ARRIV E_BEHINDi: Arriving patients with equal or lower priority than patient i

• DEPART_AHEADi: Departing patients with equal or higher priority than patient i

• DEPART_BEHINDi: Departing patients with lower priority than patient i

• NONJUMP_AHEADi: Departing patients with equal or higher priority than patient i and

that arrived before patient i

• NONJUMP_BEHINDi: Departing patients with lower priority than patient i and that

arrived before patient i

• JUMP_AHEADi: Departing patients with higher priority than patient i and that arrived

after patient i

• JUMP_BEHINDi: Departing patients with equal or lower priority than patient i and that

arrived after patient i

Note that the jump/nonjump language indicates relative arrival timing only, while the ahead/behind

language indicates relative position in the priority queue which is a function of both arrival timing

and priority level.

Once we add these �ow variables to the model, we must restrict the sample to those who have

been in the system some moderate amount of time to allow for observation of the system �ow.

Speci�cally, we restrict the sample to only patients with an o�ered wait of greater than one hour.

Since the �ow variables just described (ARRIV Ei, DEPARTi, NONJUMPi, JUMPi, etc.) are

de�ned as the �ows during the �rst hour after arrival of patient i, we are e�ectively asking the

question, �what is the e�ect of �ow during the �rst hour on patients who stay at least an hour,�

rather than the more broad ideal question of, �how does observed �ow a�ect abandonment?� This

sample restriction reduces the sample size by about half, and makes a signi�cant �nding less likely.

When we restrict the sample to patients with an o�ered time of greater than one hour it is

possible that those who abandon do so quickly and are not actually in the waiting room for an

hour to observe the �ows. However, if this is the case, this should bias our results toward the null

hypothesis of �ow variables having no e�ect since patients who abandon quickly would not observe

many arrivals or departure. Thus, any signi�cant results are likely conservative estimates of the

impact of the �ow variables.

6. Econometric Speci�cation

We now develop the econometric speci�cations for testing our hypotheses. Since we are studying

the behavior of individuals making a binary choice, we turn to models of binary choice that can

be interpreted in a random utility framework. Such models include logit, probit, skewed logit, and

complimentary log log (Greene 2012, p. 684; Nagler 1994). These models model the di�erence in
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utility between two possible actions as a linear combination of observed variables (xβ) plus a random

variable (ε) that represents the di�erence in the unobserved random component of the utility of

each option. Since ε is stochastic, these models can only predict a probability of choosing one action

over the other.

Selecting the best model a priori is di�cult because each has theoretical or practical advantages

and disadvantages which we review in Section 8. However, for the coe�cients of interest, all models

come to essentially the same conclusions in terms of which coe�cients are signi�cant and the signs

of those coe�cients. All models also return similar predicted values over the range of interest. For

the body of the paper we present the results from the probit model because it allows for easy

comparison to the bivariate probit models necessary for some results.

We de�ne the variable LWBSi to equal 1 if patient i abandons and 0 otherwise. We parametrize

the basic probit model as follows

Prob(LWBSi = 1|x) =Φ(β0 +β1OWAITi +β2CENSUSi +β3OWAITi×CENSUSi

+β4TRITESTi +XiβP +ZiβT)
(3)

where Φ(·) represents the standard normal cumulative distribution function. TRITESTi is a

binary variable indicating if any diagnostic tests were ordered for patient i at triage. Xi is a vector

of patient-visit speci�c covariates including age, gender, insurance type, chief complaint, and pain

level. Zi is a vector of time related control variables including year, a weekend indicator, indicators

for time of day by four-hour blocks, and the interaction of the weekend and time-of-day block

variables. As we examine each of the hypotheses, we gradually add more variables to the model of

Equation 3. We estimate the model separately for each triage level between 2 and 5.

The interaction term OWAITi×CENSUSi is included to allow the marginal e�ect of OWAIT

to vary with CENSUS. If we were using ordinary least squares regression, a negative interaction

coe�cient would indicate that the marginal e�ect of OWAIT is reduced when CENSUS is high.

However, due to the non-linear nature of the probit model, the interaction coe�cient can not be

interpreted in such a straightforward way. We discuss interpretation further in Subsection 7.2.1.

The OWAIT variable is a bit di�erent from all the other variables in the model in that it is not

actually observed by the patient. Even for patients that enter service, the o�ered wait is not known

until service begins, at which point abandoning is not an option. This variable should be thought of

as an exposure variable. The o�ered wait is the maximum time a patient can spend in the system

deciding whether to stay or abandon. The Erlang-A model is built around this idea that the longer a

person is in the system, the higher her total probability of abandoning. Thus, the OWAIT variable

picks up this e�ect, that patients who are given the opportunity to be in the system longer are more

likely to abandon, even though the actual o�ered wait value is not observed by the patient.
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Figure 2 Scatterplot of O�ered Wait and Load for ESI 3 patients
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ize the density of identical observations.

Our identi�cation strategy is based on the assumption that OWAIT and CENSUS are not

perfectly correlated and both contain exogenous variation. Essentially, we rely on the fact that

treatment in the ED is a highly complex process with many �moving parts� (e.g., sta�ng levels,

auxiliary services, coordination of many tasks and resources, etc.). This leads to high exogenous

variation in treatment times for each patient, and this translates into high variance in o�ered wait

times for waiting patients. This is seen in Figure 2 which shows the scatterplot of OWAIT and

CENSUS (Waiting Room Census at Arrival) for ESI 3 patients. Note that for any given level of

CENSUS there is a wide range of OWAIT .

A potential concern with this model speci�cation is the collinearity between OWAIT and

CENSUS. The pairwise correlation between OWAIT and CENSUS is 0.72. However, the Vari-

ance In�ation Factors (VIF) for the model in Equation 3 range from 3.2 to 8.9 across triage levels,

which is below the commonly accepted cuto� of 10 (Hair et al. 1995). Still, to be conservative, we

mean center all stock and �ow variables used in all models. When we do this for Equation 3, the

VIFs range from 2.4 to 3.2, which is well within the acceptable range of collinearity.

When we examine Hypothesis 5, there is a potential endogeneity problem with the inclusion

of the dummy variable indicating whether diagnostic tests were ordered at triage. The concern is

that triage testing is not randomly assigned, but rather is assigned by a triage nurse based on the

condition of the patient. As discussed in Batt and Terwiesch (2013), it is possible that there are

unobserved variables, for example pallor, that are common to, or at least correlated with, both

the triage test decision and the abandonment decision. For example, a patient who arrives feeling

terrible and looking terrible might be more likely to receive triage testing and less likely to abandon.

This can bias not only the estimate of the coe�cient of the triage test variable in the abandonment

model, but can also bias all of the estimated coe�cients.

We control for potential correlated omitted variables with a simultaneous equation model such

as the bivariate probit model (Greene 2012). This model parametrizes both the triage test decision

and the abandonment decision as simultaneous, latent-variable probit models as follows:
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TRITEST ∗
i =β1,0 +β1,1CENSUSi +β1,2BEDSi +Xiβ1,P +Ziβ1,T + ε1,i

TRITESTi = 1 if TRITEST ∗
i > 0, 0 otherwise

(4)

LWBS∗
i =β2,0 +β2,1OWAITi +β2,2CENSUSi +β2,3OWAITi×CENSUSi

+β2,4TRITESTi +Xiβ2,P +ZiβT2,T + ε2,i

LWBSi = 1 if LWBS∗
i > 0, 0 otherwise

(5)

Xi and Zi are speci�ed as before in Equation 3. ε1 and ε2 are assumed to be standard bivariate

normally distributed with correlation coe�cient ρ. If ρ = 0, this indicates that the control vari-

ables are adequately controlling for the endogenous triage testing and the models can be estimated

separately without signi�cant bias.

Because approximately 60% of the patients in our data have multiple visits to the ED during the

study period, we use the Huber/White/sandwich cluster-robust standard errors clustered on patient

ID (Greene 2012). This adjusts the covariance matrix for the potential correlation in errors between

multiple visits of a single individual. It also adjusts for potential misspeci�cation of the functional

form of the model. We �nd that this adjustment has very little e�ect on the results.

7. Results
7.1. Overview Graphs

Following the example of Zohar et al. (2002), we begin by using scatter plots to visualize the

relationship between abandonment and wait time. If patients behave in accordance with the Erlang-

A model such that wait time is the sole determinant of abandonment, then there should be a

linear increasing relationship between expected wait time and probability of abandonment (Brandt

and Brandt 2002, Zohar et al. 2002). Figure 3 shows the relationship of the probability of LWBS

to the mean completed waiting time. Each dot represents a given year/day-of-week/hour-of-day

combination. For example, one of the dots represents the mean wait and LWBS proportion of

patients that arrived on Tuesdays of 2009 during the 4pm hour. Each graph has approximately 504

points (3 years × 7 days × 24 hours=504). However, points that represent less than 10 observations

have been dropped. For example, there are not many ESI 5 patients at 4am on Mondays and that

point has been dropped. Each subplot of Figure 3 is for a single triage or ESI level. In summary,

each dot shows the average wait time and percent of people who abandoned for patients that arrived

at a given year/day/hour.

We observe several interesting features in Figure 3. First, there is a linear increasing trend for

all triage levels (See Table 2 for the slope of a linear best-�t line.). While this is as expected, it

is di�erent from Zohar et al. (2002), in that Zohar et al. (2002) �nds the surprising result that

the probability of abandonment does not increase with expected wait (the linear �t is �at). This
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Figure 3 Pr(LWBS) vs. Wait Time
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Table 2 Model Fit Measures of Regressing Pr(LWBS) on Wait Time

Slope RMSE R2

ESI 2 0.021 (0.002) 0.016 0.238
ESI 3 0.057 (0.001) 0.026 0.874
ESI 4 0.064 (0.003) 0.033 0.598
ESI 5 0.079 (0.005) 0.071 0.369

suggests that customers become more patient when the system is busy. We �nd no such evidence

in the ED.

Secondly, the slope of the linear �t decreases with acuteness (Table 2). This suggests that sicker

patients are less in�uenced by wait time, as one would expect.

The third feature we observe in Figure 3 is that the dispersion from the linear trend decreases

with acuteness. Table 2 quanti�es this e�ect by the root mean squared error (RMSE) for linear

regressions for each of the graphs in Figure 3. Further, from the R2 values in Table 2, we conclude

that mean wait time is a very good predictor of abandonment probability for ESI 3. However, for

ESI 4 and 5 patients, there appear to be other factors driving abandonment beyond just wait time.

ESI 2 appears somewhat di�erent. While ESI 2 displays a positive linear trend with little dispersion

(signi�cant positive slope and low RMSE), the model has the lowest R2 further indicating that wait

time explains very little of the the variation in ESI 2 abandonment probability. These di�erences

in response across triage levels are particularly noteworthy when we recall that patients are not

informed of their triage classi�cation. Thus, the ESI triage system is doing a remarkable job of

classifying people not only by medical acuity, but also by queuing behavior.

Given that wait time only partially explains the observed abandonment behavior, we now turn

to patient-level regression models to better understand the operational drivers of abandonment.
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7.2. Regression Analysis

The graphs in Section 7.1 are based on means calculated by aggregating across year/day/hour

combinations. We now shift to patient-level analysis and use the binary-outcome probit regression

models described in Section 6 to examine the hypotheses. Working at the patient level allows us to

control for patient speci�c covariates such as age, gender, and insurance class, that we can not do as

easily with the consolidated data in Section 7.1. For clarity, we focus on results for triage level ESI

3 in Subsections 7.2.1 and 7.2.2. We select ESI 3 because it has the largest number of observations,

the highest abandonment rate, and the largest spread of wait times. We present comparisons across

triage levels in Subsection 7.2.3, and in Subsection 7.2.4 we examine the impact of triage testing on

all triage levels.

Table 3 E�ect of Wait Time, Census, and Flow on Pr(LWBS) [ESI 3]

(1) (2) (3) (4)
O�ered Wait (hr.) 0.20∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(0.00) (0.01) (0.01) (0.01)
Census 0.07∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.00) (0.00) (0.00) (0.00)
Wait x Census -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00) (0.00)
Arrivals 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Depart(all) -0.03∗∗∗

(0.00)
Depart(nonjump) -0.03∗∗∗

(0.00)
Depart(jump) -0.01

(0.01)
N 65,622 35,855 35,855 35,855
BIC 32,767 28,780 28,721 28,729

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Triage Test, Year, Weekend×Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

7.2.1. Observed Variables Model 1 of Table 3 shows the results of estimating Equation 3 on

the full sample. Probit coe�cients are di�cult to interpret directly since they represent a change

in the linear z-score predictor due to a change in an independent variable. The �rst-order terms

of O�ered Wait and Census are positive and signi�cant (β1, β2 > 0), but the negative interaction

coe�cient (β3 < 0) makes it di�cult to draw conclusions about hypotheses by inspection of the

table. Estimated marginal e�ects and predicted values are more informative.

Because the model is nonlinear, the marginal e�ect of a covariate on the predicted probability

is a function of not only the coe�cients but also of the value of all the other covariates. To get a
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Figure 4 Predicted Pr(LWBS) as a function of O�ered Wait and Census
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sense of the magnitude of e�ects, we calculate the mean marginal e�ect (across patients) of both

the o�ered wait and census variables at their respective median values of 1.3 hours and 10 people.

In Model 1, the predicted probability of abandonment increases by 2.0 percentage points with a one

hour increase in o�ered wait. The marginal e�ect of observing an additional person in the waiting

room when a patient arrives is a 0.5 percentage point increase in abandonment for ESI 3 patients.

We can alternatively describe the marginal impact of an additional person in the waiting room as

being equivalent to a 15 minute increase in o�ered wait. This supports Hypothesis 1 and shows that

the Erlang-A model alone does not fully explain abandonment behavior. If it did, census should

have no e�ect, controlling for wait time.

The marginal e�ect of waiting room census ranges from 0.1 to 0.4 percentage points for the

other triage levels. Lu et al. (2012) estimates that a �ve person increase in queue length leads to

a three percentage point drop in deli purchase incidence. This is equivalent to a marginal e�ect of

0.6 percentage points per person in line, and is quite close to our estimated marginal e�ect of 0.5

percentage points per person in the ED queue. This similarity in magnitude is somewhat surprising

since waiting at the ED for medical care and waiting at the deli for cold cuts serve very di�erent

purposes and presumably generate markedly di�erent levels of utility for the patients/customers.

Figure 4 shows the predicted abandonment probabilities at three levels of o�ered wait and census.

O�ered Wait is on the x-axis and the three test points (0.11, 1.29, 5.30 hours) are the 10th 50th, and

90th percentiles for ESI 3 patients. Each line on the graph represents the predicted probability of

abandonment for a given census level. The three lines are the 10th, 50th, and 90th percentile census

levels (1, 10, and 25 people respectively). The error bars represent the 95% con�dence interval for
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the prediction. The upward slope of all of the lines conforms to the standard theory that longer

waits lead to increased probability of abandonment. The vertical separation of the lines, however,

indicates that patients are responding to the census level as well as the wait time. For example, a

patient that arrives when the waiting room is relatively empty and experiences a 1.29 hour wait has a

predicted probability of abandonment of 2%. However, if the waiting room is relatively crowded and

all other covariates are held constant, the same patient has a predicted probability of abandonment

of 19%. Thus, Figure 4 shows that patients respond to both increasing o�ered wait and waiting

room census with increased abandonment.

The large gap between the median and 90th percentile census levels even for very short waits

suggests that large crowds lead to rapid abandonment even when the actual wait time is low. This

also explains why the slope of the 90th percentile census line is relatively �atter. People are likely

abandoning sooner and are not remaining in the system to be impacted by the experienced wait. In

other words, the impact of wait time is lower when the census is high. In contrast, for low to mid

census levels, the e�ect of long wait times is larger.

To examine Hypothesis 2A, Hypothesis 2B, and Hypothesis 2C, we now include �ow variables in

the analysis. Recall that to do so we restrict the sample to those patients with an o�ered wait of

greater than one hour, which reduces the sample size by almost half. Model 2 of Table 3 is the same

as Model 1 (Equation 3) but with the restricted sample. We include it merely for comparison.

Model 3 of Table 3 adds in variables for the number of arrivals to the ED and for the number of

departures into service. The positive and signi�cant coe�cient on arrivals supports Hypothesis 2A

that arrivals lead to more abandonments. The coe�cient on departures is signi�cant and negative.

This supports Hypothesis 2B that observing departures leads to reduced abandonment, presumably

because waiting patients view these departures as a good sign of processing speed and progress

towards service.

Model 4 of Table 3 splits the departures variable into nonjump and jump departures. The coe�-

cient on nonjump departures is signi�cant and negative while the coe�cient on jump departures is

insigni�cant. This continues to support Hypothesis 2B and suggests that Hypothesis 2C is correct.

The insigni�cant e�ect of jump departures shows that any positive information about system speed

is negated by the fact that the patient is getting jumped and is not moving closer to the head of

the line. A one-sided z-test comparing the nonjump and jump coe�cients con�rms Hypothesis 2C

and shows that the jump departures coe�cient is larger (less negative) at a 94% con�dence level.

In terms of marginal e�ects, observing an arrival increases abandonment by 0.3 percentage points

and observing a nonjump departure reduces abandonment by 0.6 percentage points. Figure 5 shows

these same marginal e�ects in wait time equivalents. For example, observing an additional arrival

per hour leads to the same increase in abandonment as an additional nine minutes of o�ered wait
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Figure 5 Magnitude of Marginal E�ect in Equivalent Minutes of O�ered Wait

-20

-15

-10

-5

0

5

10

15

20

Census Arrival Depart
(nonjump)

Depart
(jump)

�
W

ai
t T

im
e 

E
qu

iv
al

en
t 

(m
in

.)

Note: Depart(jump) marginal e�ect estimate is statistically insigni�cant

time. Similarly, observing a nonjump departure has the same impact on abandonment as a 19 minute

reduction in o�ered wait.

In summary, patients respond to what they observe and the magnitudes of their responses are

similar in magnitude to 10 to 20 minutes of waiting time.

7.2.2. Inferred Variables We now consider inferred system state variables. We are looking

for evidence of patients behaving di�erently in the presence of patients that are ahead of or behind

themselves in the priority queue structure. In practice, patients are not given any information about

their own priority level or other patients' priority levels. If patients truly have no information about

the priority of those around them then one would expect the ahead and behind components of each

queue status variable to have indistinguishable coe�cients.

Model 1 in Table 4 is analogous to Model 1 in Table 3 but with the census variable split into

ahead and behind components as described in Section 5. It is estimated on the full sample. A one-

sided z-test shows that the Census(Ahead) coe�cient is larger than the Census(Behind) coe�cient.

A Wald test of the marginal e�ects of Census(Ahead) and Census(Behind) con�rms that patients

respond more strongly to an increase in the census ahead than an increase in the census behind.

This is all evidence in support of Hypothesis 3. The BIC of Model 1 in Table 4 is smaller than the

BIC of Model 1 in Table 3 indicating that splitting the census into its ahead/behind components

improves the �t of the model.

Model 2 in Table 4 is analogous to Model 4 in Table 3 but with the census and �ow vari-

ables split into their respective ahead and behind components. We compare the coe�cients of each

ahead/behind pair and �nd that the values are signi�cantly di�erent and that the ahead component
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Table 4 E�ect of Wait Time and Census on Pr(LWBS) [Probit, ESI 3]

(1) (2)
O�ered Wait (hr.) 0.19∗∗∗ 0.11∗∗∗

(0.00) (0.01)
Census(Ahead) 0.09∗∗∗ 0.08∗∗∗

(0.00) (0.00)
Census(Behind) 0.02∗∗∗ 0.01∗

(0.00) (0.01)
WaitxCensus(Ahead) -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00)
WaitxCensus(Behind) -0.00∗∗∗ -0.00

(0.00) (0.00)
Arrivals(Ahead) 0.05∗∗∗

(0.01)
Arrivals(Behind) 0.00

(0.00)
Depart(Nonjump-Ahead) -0.03∗∗∗

(0.00)
Depart(Nonjump-Behind) -0.01∗

(0.01)
Depart(Jump-Ahead) -0.06∗∗∗

(0.02)
Depart(Jump-Behind) -0.01

(0.01)
N 65,622 35,855
BIC 32,626 28,611

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Triage Test, Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

always has a larger magnitude than the behind component. This supports Hypothesis 4A, Hypoth-

esis 4B, and Hypothesis 4C. Lastly, Model 2 in Table 4 has a smaller BIC than Model 4 in Table 3

indicating a better model �t with the stock and �ow variables split into ahead/behind components.

Like Figure 5, Figure 6 shows the marginal e�ects of the split stock and �ow variables in terms of

equivalent wait time minutes. The marginal e�ect of the ahead component of each variable is much

larger than of the behind component, and the magnitude of the e�ects on this subsample is much

larger than for the full sample. We note that while the point estimates of the Depart(nonjump)Ahead

and Depart(jump)Ahead seem quite disparate (-25 minutes and -45 minutes), they are statistically

indistinguishable at the 10% level.

These results show that waiting patients respond quite di�erently to the presence and movement

of patients of relatively higher and lower priority. The observed behavior is consistent with the idea

that patients anticipate that it is largely the patients ahead of them in the queue that interfere with

their experience. While the directions of the e�ects are all as expected, this result is noteworthy
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Figure 6 Magnitude of Marginal E�ects in Equivalent Minutes of O�ered Wait
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because it shows that patients are indeed inferring relative priority information by observing the

other patients.

We create a proxy measure of patients' classi�cation accuracy by constructing the ratio

θ=
βAHEAD

βAHEAD +βBEHIND
(6)

Let βAHEAD be the estimated coe�cient of one of the Ahead variables in Table 4 and let βBEHIND

be the estimated coe�cient of the matching Behind variable. If patients believe that those behind

them in line have no impact on residual wait time and if patients were perfect at classifying those

ahead and behind, then βAHEADwould be non-zero, βBEHIND would be zero and θ would be unity.

If, however, patients had no ability to discern those ahead and behind, then βAHEAD would equal

βBEHIND and θ would equal 0.5 indicating that a patient's ability to classify other patients was no

better than a coin toss. For example, if we focus on Jump Departures in Model 2, βAHEAD =−0.06,

βBEHIND = −0.01, Looking at the other Ahead/Behind variable pairs in Table 4, we see θ range

between 0.75 and 1. While we do not interpret θ as a literal measure of classi�cation accuracy, it does

suggest that patients are doing a fairly good job at classifying the other patients and responding

accordingly.

7.2.3. Results Across Triage Levels Table 5 shows the results of the best �tting model

(Model 2 from Table 4) for all triage levels. The results are similar across triage levels in terms

of which coe�cients are signi�cant and the signs of those coe�cients. At �rst glance, there ap-

pear to be two unexpected results for ESI 4 (Model 3). The Census(Behind) coe�cient is larger

than the Census(Ahead) coe�cient, and the Depart(Nonjump-Behind) coe�cient is larger than the

Depart(Nonjump-Ahead) coe�cient. This would seem to suggest that ESI 4 patients are somehow
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Table 5 E�ect of Ahead/Behind variables on Pr(LWBS)

(1) (2) (3) (4)
ESI 2 ESI 3 ESI 4 ESI 5

O�ered Wait 0.14∗∗∗ 0.11∗∗∗ 0.15∗∗∗ 0.00
(0.05) (0.01) (0.02) (0.03)

Census(Ahead) 0.15∗∗∗ 0.08∗∗∗ 0.04∗∗∗ 0.04∗∗∗

(0.02) (0.00) (0.00) (0.01)
Census(Behind) 0.02∗∗ 0.01∗ 0.08∗∗∗

(0.01) (0.01) (0.02)
WaitxCensus(Ahead) -0.02∗∗∗ -0.01∗∗∗ -0.00∗∗∗ -0.00

(0.01) (0.00) (0.00) (0.00)
WaitxCensus(Behind) -0.00 -0.00 -0.01

(0.00) (0.00) (0.01)
Arrival(Ahead) 0.03 0.05∗∗∗ 0.02∗∗∗ 0.02∗∗

(0.17) (0.01) (0.01) (0.01)
Arrival(Behind) 0.01 0.00 0.01 -0.01

(0.01) (0.00) (0.01) (0.03)
Depart(Nonjump-Ahead) -0.08∗∗∗ -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗

(0.02) (0.00) (0.01) (0.01)
Depart(Nonjump-Behind) -0.01 -0.01∗ -0.05∗

(0.01) (0.01) (0.03)
Depart(Jump-Ahead) 0.07 -0.06∗∗∗ -0.00 -0.01

(0.22) (0.02) (0.02) (0.02)
Depart(Jump-Behind) -0.06 -0.01 -0.08 0.02

(0.04) (0.01) (0.06) (0.19)
N 8,974 35,855 19,745 5,213
BIC 2,688 28,611 9,568 3,593

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain,

Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

more sensitive to those behind than in front of them. However a Wald test for coe�cient equality

shows that the two census coe�cient are not signi�cantly di�erent at the 10% level, nor are the

two depart coe�cients. Thus, the correct interpretation is that ESI 4 patients do not appear to

di�erentiate between those ahead of and behind in line, at least with regard to census level and

departures.

ESI 5 is the most dissimilar of the four models. First, the variables CENSUS_BEHIND and

NONJUMP_BEHIND are not included in the ESI 5 model because ESI 5 is the lowest priority

level. Second, the O�ered Wait has an insigni�cant e�ect on abandonment while Census(Ahead)

continues to lead to greater abandonment. Without additional data on actual abandonment times,

we are unable to determine if this result is because ESI 5 patients are truly insensitive to waiting

time, or because they abandon so rapidly that the o�ered wait is irrelevant. Either way, it appears

that for ESI 5 patients there is not much value in improving the wait time.



Batt and Terwiesch: Waiting Patiently

26

Table 6 E�ect of Triage Testing on Pr(LWBS) (Probit & Bivariate Probit models)

Probit Biprobit
(1) (2) (3) (4) (5) (6) (7) (8)

ESI 2 ESI 3 ESI 4 ESI 5 ESI 2 ESI 3 ESI 4 ESI 5
O�ered Wait 0.21∗∗∗ 0.20∗∗∗ 0.22∗∗∗ 0.11∗∗∗ 0.21∗∗∗ 0.19∗∗∗ 0.22∗∗∗ 0.11∗∗∗

(0.02) (0.00) (0.01) (0.02) (0.02) (0.00) (0.01) (0.02)
Census 0.04∗∗∗ 0.07∗∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.07∗∗∗ 0.04∗∗∗ 0.05∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Wait x Census -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Triage Test (Y/N) -0.44∗∗∗ -0.51∗∗∗ -0.47∗∗∗ -0.23∗∗ -0.41∗∗∗ -0.14∗∗∗ -0.25∗∗∗ -0.46∗∗∗

(0.05) (0.02) (0.04) (0.11) (0.14) (0.05) (0.08) (0.18)
ρ -0.02 -0.23 ∗∗∗ -0.15 ∗∗∗ 0.14

(0.09) (0.03) (0.05) (0.10)
Marginal E�ects
∂Pr(LWBS)

∂TRITEST
-0.014∗∗∗ -0.064∗∗∗ -0.031∗∗∗ -0.024∗∗∗ -0.013∗∗∗ -0.018∗∗∗ -0.018∗∗∗ -0.043∗∗∗

0.002 0.002 0.002 0.010 0.004 0.007 0.005 0.012
N 27,455 65,622 39,806 10,483 27,455 65,622 39,806 10,483

Standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain, Chief Complaint, Year, Weekend, Block of Day

Coe�cients for Triage Testing equation not shown
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

7.2.4. Triage Testing Models 1 through 4 of Table 6 show the results of estimating the basic

probit model of Equation 3 for ESI levels 2 through 5. In these models, the Triage Test coe�cient

is negative and signi�cant indicating that those who receive an early diagnostic test order from the

triage nurse are less likely to abandon. However, as described in Section 6 there is an endogeneity

concern since triage testing is not randomly assigned. Models 5 through 8 of Table 6 show the results

of estimating Equation 5 using a bivariate probit model. For ESI 3 and ESI 4 patients, the estimated

correlation coe�cient (ρ) is negative and signi�cant indicating correlation in the error terms of

Equations 4 and 5. This means that ESI 3 and 4 patients who receive triage testing are inherently

more likely to stay. However, even after controlling for the correlation, triage testing continues to

have a signi�cant, albeit diminished, impact on abandonment, thus supporting Hypothesis 5. This

con�rms similar results reported in Pham et al. (2009). Once the correlation is controlled for, the

marginal e�ect of triage testing on abandonment is quite similar across ESI levels 2, 3 and 4, ranging

from -1.3 percentage points to -1.8 percentage points.

The results for ESI 5 patients are slightly di�erent in that the estimated correlation coe�cient is

positive, albeit insigni�cant (p-value: 0.18). This leads to the estimated coe�cient on triage testing

being larger in magnitude in the bivariate probit model than in the probit model. For ESI 5 patients,

triage testing leads to a 4.3 percentage point reduction in abandonment probability, more than

double the magnitude of the e�ect for the other triage levels. This suggests that the behavior of ESI

5 patients is more malleable than is the behavior of the more acute patients.
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Failing to control for an endogenous regressor like triage testing has the potential to bias all

coe�cient estimates in the model. However, Table 6 shows that in our analysis, this does not

appear to be a problem. The coe�cients of the key variables of interest, o�ered wait and census,

remain largely unchanged whether the probit or bivariate probit model is used. We perform the

same bivariate probit analysis (not shown) on the best �tting model for all triage levels, similar to

Table 5, and likewise �nd that while there is evidence of endogenous triage testing, controlling for

it does not alter the estimates of the stock and �ow variable coe�cients. Thus we conclude that for

the purpose of examining the e�ects of wait, census, and �ows on abandonment, the simpler single

equation model is su�cient.

8. Robustness of Model Selection

As mentioned in Section 6, there are several binary outcome models to choose from: logit, probit,

skewed logit, and complimentary log log. These models di�er in the choice of distribution of ε which

determines the functional form of the response of the prediction to a change in an independent

variable. Choosing either the logistic or the normal distribution leads to the well known logit and

probit models, respectively. Assuming ε follows a complementary log log distribution (F (xβ) =

1− exp[− exp(xβ)]) leads to the CLL model. The Burr-10 distribution (Burr 1942) assumes ε is

distributed with cumulative distribution function F (xβ, α) = 1−1/{1 + exp(xβ)}α. As a regression

model, it is referred to as the skewed logistic or scobit model (Nagler 1994). Note that the logit

model is a special case of the scobit model with α= 1.

The logit and probit models are the most commonly used binary models and are quite similar,

especially in the middle of the probability range. The logit has the further advantage of coe�cients

that can be immediately interpreted as impacts on odds-ratios. One advantage of the probit model

is that it can be easily adapted to control for an endogenous regressor if necessary.

However, the logit and probit models are symmetric about xβ= 0, which imposes the restriction

that observations with predicted probabilities close to 0.5 are most impacted by a change in the

linear predictor. Since abandonment is a rare event (less than 10% of arrivals result in abandonment),

the asymmetric cloglog and scobit models likely provide a better �t. Unlike the logit and probit

models, the asymmetric models have a di�erent �t depending on whether staying or abandoning is

coded as �success.� Thus we have at least six models to consider: logit, probit, CLL coded two ways,

and scobit coded two ways.

Table 7 compares six such model speci�cations for the baseline model with o�ered wait, census,

and the interaction for ESI 3 (cross-reference Table 3, Model 1). The top panel of the table shows

estimated coe�cients for the variables of interest. The middle panel shows marginal e�ects of the

variables of interest at their respective medians. The bottom panel gives model �t statistics. We see
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Table 7 Comparing Binary Response Models [ESI 3]

(1) (2) (3) (4) (5) (6)
Logit Probit CLL CLL Scobit Scobit

(LWBS=1) (Stay=1) (LWBS=1) (Stay=1)
Coe�cients
O�ered Wait (hr.) 0.37∗∗∗ 0.20∗∗∗ 0.32∗∗∗ -0.16∗∗∗ 0.63∗∗∗ -0.17∗∗∗

(0.01) (0.00) (0.01) (0.00) (0.04) (0.01)
Census 0.14∗∗∗ 0.07∗∗∗ 0.12∗∗∗ -0.05∗∗∗ 0.21∗∗∗ -0.06∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
Wait x Census -0.02∗∗∗ -0.01∗∗∗ -0.02∗∗∗ 0.01∗∗∗ -0.03∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
alpha 0.12 11.2

(0.015) (5.43)
Marginal E�ects
O�ered Wait 0.017∗∗∗ 0.020∗∗∗ 0.016∗∗∗ -0.023∗∗∗ 0.023∗∗∗ -0.022∗∗∗

(0.000) (0.001) (0.000) (0.001) (0.001) (0.001)
Census 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗∗ -0.006∗∗∗ 0.006∗∗∗ -0.006∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
N 65,622 65,622 65,622 65,622 65,622 65,622
log-likelihood -16,262 -16,201 -16,314 -16,183 -16,177 -16,181
BIC 32,890 32,767 32,995 32,733 32,731 32,739

Cluster robust standard errors in parentheses

Controls not shown: Age, Gender, Insurance, Pain, Year, Weekend, Block of Day
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

that all the models are similar in terms of �t as indicated by both the log-likelihood and the BIC.

The scobit (LWBS=1) model provides the best �t.

Comparing coe�cient estimates across models is of limited use since the models are parametrized

di�erently. However, we do see that all coe�cients are signi�cant and the signs are all in agreement.

Further, comparing coe�cients of the two versions of the cloglog model and the scobit model we

see that the coe�cients are dramatically di�erent depending on whether stay or LWBS is coded as

�success.� This indicates that the data is skewed to one side, as expected.

Comparing marginal e�ects, we see again that the models all give similar results. A one hour

increase in o�ered wait leads to a two to three percentage point increase in abandonment, or alter-

natively, a ten minute increase in o�ered wait leads to a 0.3 to 0.4 percentage point increase. A one

unit increase in census leads to a 0.4 to 0.6 percentage point increase in abandonment. Note that

the probit model, which we use for the presentation of main results in Section 7.2, underestimates

the marginal e�ect of o�ered wait and census relative to the better �tting models. Thus, the results

presented are conservative.

9. Discussion & Future Work

This study contributes to the understanding of customer waiting behavior by examining the queue

abandonment behavior of patients waiting for treatment at a hospital emergency department. The
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essence of our contribution is in providing evidence that waiting customers glean information from

watching the queue around them and update their utility function in response. Ours is among the

�rst works to show customers responding to the actual functioning of the queue. We expand on prior

work showing that the queue length (waiting room census, in our study) impacts behavior separate

from wait time. This shows that in queues that are at least partially visible, the Erlang-A model does

not fully capture abandonment behavior. Beyond just the queue length, we �nd that patients respond

to other visual aspects of the queue in very sophisticated ways. For example, patients increase

abandonment in response to observing arrivals, presumably because waiting patients recognize that

the queue is not FCFS and the new arrivals may be served �rst. Further, waiting patients infer the

relative priority status of those around them and respond di�erently to those more sick and less

sick. For example, we �nd that the arrival of sicker, higher priority patients increases abandonment

of those already waiting more so than does the arrival of less sick, lower priority patients. Waiting

patients likely recognize that it is the sicker patients that will generally be served �rst. Lastly, we

show that patients who have diagnostic tests ordered during triage are less likely to abandon. All

of these e�ects are consistent with patients updating their expected residual wait time in response

to what they observe and experience. This is managerially relevant for any organization that wants

to manage customer abandonment.

Throughout this work, we have intentionally avoided making any assumptions about the �optimal�

level of abandonment. To do otherwise would require de�ning the hospital's objective function,

but the hospital's objective is not at all clear. Revenue maximization would suggest eliminating

abandonment and serving everyone who walks in the door. Likewise, a belief in a social obligation

to serve all comers leads to a desire to eliminate abandonment. Social welfare maximization would

suggest providing full information if the hospital believes that patients can accurately evaluate

their own utility. However, if the hospital believes that patients are boundedly rational or can not

accurately assess their need for treatment, then the hospital may withhold information. Lastly, pro�t

maximization would suggest selectively serving only the most pro�table patients while somehow

avoiding serving the less pro�table ones.

In our study hospital, the expressed objective is to minimize abandonment, largely out of a sense

of duty to serve anyone seeking care. This is also a reasonable objective because the Centers of

Medicare and Medicaid Services will soon require hospitals to report ED performance measures such

as median wait time, median length of stay, and LWBS percentage (Centers for Medicare & Medicaid

Services 2012). Eventually, target values will be established and hospitals will be reimbursed based

on their performance relative to the targets. Thus, hospitals will be looking to reduce abandonment

at least to the target levels.
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If we take minimization of abandonment to be the goal, then the managerial implication of our

results is that the status quo of providing no information to the patients may not be optimal.

Patient abandonment increased substantially with queue length, regardless of wait time, and thus

either hiding the queue or providing more queue information may serve to reduce abandonment.

The hospital could hide the queue by providing separate waiting rooms for each triage level, or it

could provide more information in the form of a wait time estimate or a queue status display board.

Another implication of our results is that early initiation of service tends to reduce abandonment.

Thus, the hospital could be more aggressive in ordering tests, perhaps even placebo tests, at triage.

Future work should use these �ndings to motivate and inform a series of controlled experiments.

For example, it would be interesting to compare the e�ectiveness of providing more queue infor-

mation versus obscuring information. Presumably, obscuring the queue would shift the behavior

toward that of an invisible queue, such as a call center, but this should be explored empirically.

Lessons learned from such experiments will serve to improve both ED management and our general

understanding of human queuing behavior.
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