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Abstract

Performance-based contracting is reshaping service support supply chains in capital intensive in-

dustries such as aerospace and defense. Known as “power by the hour” in the private sector and

as performance-based logistics (PBL) in defense contracting, it aims to replace traditionally used

fixed-price and cost-plus contracts in order to improve product availability and reduce the cost of

ownership by tying a supplier’s compensation to the output value of the product generated by the

customer (buyer).

To analyze implications of performance-based relationships, we introduce a multitask principal-

agent model to support resource allocation and use it to analyze commonly observed contracts. In

our model the customer (principal) faces a product availability requirement for the “uptime” of the

end product. The customer then offers contracts contingent on availability to n suppliers (agents) of

the key subsystems used in the product, who in turn exert cost reduction efforts and set spare parts

inventory investment levels. We show that the first-best solution can be achieved if channel members

are risk-neutral. When channel members are risk-averse, we find that the second-best contract

combines a fixed payment, a cost-sharing incentive and a performance incentive. Furthermore, we

show how these contracts evolve over the product deployment life cycle as uncertainty in support

cost changes. We show, in particular, that when the customer is less (more) risk-averse than the

suppliers, the performance incentive increases (decreases) while the cost sharing incentive decreases

(increases) with time. Finally, we illustrate the application of our model to a problem based on

aircraft maintenance data and show how the allocation of performance requirements and contractual

terms change under various environmental assumptions.
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1 Introduction

Support and maintenance services continue to constitute a significant part of the U.S. economy, often

generating twice as much profit as do sales of original products. For example, a 2003 study by Accenture

(see [1]) found that $9B in after-sales revenues produced $2B in profits for General Motors, which is a

much higher rate of profit than its $150B in car sales generated over the same time period. According to

the same study, after-sales services and parts contribute only 25% of revenues across all manufacturing

companies but are responsible for 40-50% of profits.

Since after-sales support services are often provided and consumed by two different organizations

(i.e., the OEM and the customer), the issue of contracting between them becomes important. While

contracts for maintenance services of simpler products (electronics, automobiles) involve fixed pay-

ments for warranties, there are many instances of complex systems that require more sophisticated

relationships between service buyers and suppliers. For example, in capital-intensive industries such as

aerospace and defense, significant uncertainties in cost and repair processes make it very hard to guar-

antee a predetermined service level or quote a price for providing it. Therefore maintenance support in

these industries typically involves cost-sharing arrangements, which include fixed-price and cost-plus

contracts. Under the former, the buyer of support services pays a fixed fee to the supplier to purchase

necessary parts and support services; under the latter, the buyer compensates the supplier’s full cost

and adds a premium.

Through our work with aerospace and defense contractors we have observed a major shift in support

and maintenance logistics for complex systems over the past few years. Performance-based contracting,

a novel approach in this area, is replacing traditional service procurement practices. This approach

is often referred to as Power by the Hour or Performance-Based Logistics (PBL) in, respectively,

the commercial airline and defense industries. The premise behind performance-based contracting

is summarized in the official Department of Defense (DoD) guidelines (Section 5.3 in [11]): ”The

essence of Performance Based Logistics is buying performance outcomes, not the individual parts and

repair actions... Instead of buying set levels of spares, repairs, tools, and data, the new focus is on

buying a predetermined level of availability to meet the [buyer’s] objectives.” In 2003, the DoD issued

Directive 5000.1 [10] which “requires program managers to develop and implement PBL strategies that

optimize total system availability.” Hence, all future DoD maintenance contracts are mandated to be

performance-based.

A critical element of performance-based contracting is the clear separation between the buyer’s

expectations of service (the performance goal) and the supplier’s implementation (how it is achieved).

In the words of Macfarlan and Mansir [20], “The contract explicitly identifies what is required, but
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the contractor determines how to fulfill the requirement.” As a consequence of this flexibility, PBL

contracting should promote new and improved ways to manage spare parts inventory, reduce adminis-

trative overhead, negotiate contracts, and make resource allocation decisions. For example, under the

traditional cost-plus contract, the supplier of a service must truthfully report its detailed cost struc-

ture to the buyer in order to determine which expenses are eligible for reimbursement. Under a PBL

arrangement, the supplier does not have to share cost information at this level of detail. Moreover,

the product buyer no longer directly manages or possibly even owns resources such as the inventory

of spares. Finally, in the long run suppliers may find it in their interest to invest in designing more

reliable products and more efficient repair and logistics capabilities.

Not surprisingly, such a radical change in the approach to contracting has caused confusion among

suppliers of after-sales support services. The academic literature, however, offers little guidance with

respect to how such contracts should be executed. In this paper we aim to take a first step towards

filling this void by proposing a model of performance-based contractual relationships that arise in

practice when procuring repair and maintenance services. We embed a classical single-location spare

parts inventory management problem into a principal-agent model with one principal (representing

the end customer), and multiple interdependent agents (representing suppliers of the key product

subsystems). Each agent performs two tasks that are subject to moral hazard: spare parts inventory

management and cost reduction. We use this model to analyze three types of contracts (and any

combination thereof) that are commonly encountered in aerospace and defense procurement and high

technology industries, namely, fixed-price, cost-plus and PBL. In analyzing these contracts we analyze

the following questions: (1) what is the optimal combination of contractual levers that achieves the

best possible outcome for the buyer? (2) how should a performance requirement for the final product

be translated into the performance requirements for the suppliers who provide critical components?

and (3) how should the risk associated with the maintenance of complex equipment be shared among

all supply chain members?

We show that, if suppliers’ decisions are observable and contractible, the contract that achieves the

first-best solution is a nonperformance arrangement that combines partial cost reimbursement with

a fixed payment. If supplier actions are unobservable and the parties are risk-neutral, we show that

the first-best solution can still be achieved using a contract that combines a performance incentive

with a fixed payment (but no cost sharing). However, when even one of the parties is risk-averse,

the first-best solution cannot be achieved. In this case, we show that “pure” fixed-price, cost-plus, or

performance-based contracts (or any pair-wise combination of them) are not suitable because they do

not provide the necessary incentives. Thus, we show that the second-best contract involves all three

elements: a combination of a fixed payment, a cost sharing payment and a performance-based payment.
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For any such contract proposed by the customer, we find analytically optimal decisions for all suppliers.

Unfortunately, the buyer’s problem neither is well-behaved nor admits tractable analytical solutions

(the latter is true even in the centralized supply chain). Using a combination of analytical results for

special cases and numerical analysis performed on a data set that is representative of a supply chain

supporting a fleet of military airplanes, we obtain insights into the structure of the optimal contract. In

particular, we study the sensitivity of the optimal contract to cost uncertainty and infer that, when the

principal is less (more) risk-averse than the suppliers, the performance incentive increases (decreases)

while the cost sharing incentive decreases (increases) as time progresses. Finally, we analyze the impact

of problem parameters on contractual terms, performance, and profitability.

To the best of our knowledge, this paper represents the first attempt to embed the after-sales service

supply chain model into the principal-agent framework in which the supply chain members behave in a

self-interested manner. Our results are consistent with the observed practice of using multiple contract

types whose mix evolves over time. Finally, the model framework introduced here can be implemented

in conjunction with more detailed supply chain models to support contract negotiations and long-term

strategic analysis. The rest of the paper is organized as follows. After a brief review of related literature

in Section 2, we present modeling assumptions and notations in Section 3. In Section 4 we analyze the

first-best solution as well as derive solutions for the general second-best case. In Section 5 we analyze

special cases, beginning with the risk-neutrality assumption, then we study an environment in which

the suppliers’ actions are partially observable, and finally we study a situation with one supplier. Two

numerical examples are presented in Section 6, including the one based on the aforementioned military

aircraft data set. Finally, in Section 7 we discuss managerial implications of our study.

2 Literature Review

Two distinct models are blended together in our paper: a classical inventory planning model for re-

pairable items, well known in operations management, and the moral hazard model that has been

an area of active research in economics. The theory of repairable parts inventory management dates

back to the 1960s when Feeney and Sherbrooke [13] introduced a stochastic model of the repairable

inventory problem whose steady-state solution relies on the application of Palm’s Theorem. Sher-

brooke’s METRIC model (Sherbrooke [28]) and its extensions, such as Muckstadt [23] and Sherbrooke

[29], established the basic modeling framework and heuristic optimization algorithms for allocating

inventory resources in multi-echelon, multi-indentured environments. Subsequent models have led to

notable success in enabling the management of multimillion-dollar service parts inventory resources in

both commercial and government applications (e.g., see Cohen et al. [7] for a discussion of a successful
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application of multi-echelon optimization by IBM’s service support division). Research in this area has

largely focused on improving computational efficiency and on incorporating more realistic modeling

assumptions, such as allowing for capacitated supply or nonstationary demand processes. For a recent

comprehensive account of developments in this field, see Muckstadt [24], who reviews the underlying

theory, Sherbrooke [30], which focuses on aerospace and defense industry applications, and Cohen et al.

[6], which introduces a modeling framework that has been used to guide the development of state-of-the

art software solutions in various industries.

In brief, repairables inventory models are concerned with finding optimal (cost-minimizing) inven-

tory stocking targets for each product component subject to an overall service constraint. Service

(performance) requirements can be defined in terms of either item fill rates or end product availability

(i.e., system “uptime”). The latter is the preferred choice in aerospace and defense environments, and

we adopt it in our paper (for a discussion of comparison of these metrics, see Sherbrooke [28]).

Numerous papers study the principal-agent models, and comprehensive review can be found in

Bolton and Dewatripont [2]. The building block for our paper is the moral hazard model in which

actions of agents (suppliers) are unobservable to the principal (customer). Moreover, our model in-

cludes elements of multitasking (Holmström and Milgrom [14]), because the two decision variables for

suppliers, the cost reduction effort and the inventory position, interact with each other. An additional

complication is the presence of multiple agents whose decisions together impact the performance con-

straint that the principal faces. There are a number of economics papers discussing cost reimbursement

contracts in the presence of moral hazard. For example, Scherer [27] considers optimal cost-sharing

and the impact of risk aversion in defense procurement. McAfee and McMillan [22] presents a model in

which firms bid for government contracts under significant cost-related risks. Inspired by this research,

we allow for risk aversion and study cost-plus and fixed-price contracts in the context of after-sales

support and compare them with performance contracts. In the operations management literature,

work of So and Tang [32] is closely related to our paper in that they also consider outcome-based

reimbursement policies, but their focus is on the health-care industry.

Incentive alignment in supply chains through contracts has been a topic of great interest in oper-

ations management over the past decade (see Cachon [3] for a comprehensive survey). Recently, the

role of information asymmetry has received considerable attention both in the adverse selection setting

(representative articles include Corbett [8], Iyer et al. [15], Lutze and Ozer [19] and Su and Zenios [33])

and in the moral hazard setting (for example, see Plambeck and Zenios [26], Chen [4] and Plambeck

and Taylor [25]). The current paper contributes to this growing area as well.

As is evident from our survey, although there is voluminous literature on repairables inventory

management, to date this stream of research has been confined to single-firm models and hence does
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not address issues that arise in decentralized supply chains. Furthermore, although the extensive

literature in economics aims to model contractual relationships among different parties, it does not

address the complexities of repair and maintenance contracting environments. To our knowledge, our

paper is the first to put a repairables inventory model into the decentralized framework and to study

the issue of contracting in after-sales service supply chains.

3 Modeling Assumptions

The principal is the customer for N identical assembled products (“systems,” which can be airplanes,

computers, manufacturing equipment, etc.) Each system is composed of n distinct major parts (“sub-

systems” which, in the case of an airplane, can represent avionics, engines, landing gear, weapons

systems, etc.), each produced and maintained by a unique supplier. We use subscript 0 to denote the

customer and subscript i for subsystem supplier i, i = 1, 2, ..., n. We ignore the indenture structure in

the subsystem’s bill of materials, treating each subsystem as a single composite item. In the following

subsections, we describe the repair process and supplier cost structure, explain how risk aversion is

represented, define the performance measure, specify contract terms, and derive the utilities of the

customer and the suppliers.

3.1 Repair Process

Failure of the subsystem i is assumed to occur at a Poisson rate λi, independently from failures of other

subsystems. Each supplier maintains an inventory of spares and a repair facility. A one-for-one base

stock policy is employed for spares inventory control. That is, a failed unit is immediately replaced by a

working unit (if it is available) from the supplier’s inventory. If a replacement is unavailable, a backorder

occurs, and the affected system becomes inoperable. As a result, downtime in any subsystem leads

to downtime of the system. Upon failure, the defective unit immediately goes into the repair facility,

modeled as an M/G/∞ queue. We assume ample capacity (i.e., infinite number of servers) which

is an idealization of reality, but it is considered a reasonable approximation (Sherbrooke [30]). This

assumption leads to the desirable property that repair lead times of different items are independent. It

takes, on average, Li time units to repair the subsystem, and once the task is completed the subsystem

is placed in the supplier’s inventory. Forward and return transportation lead times are incorporated

into the repair lead time and are assumed to be independent of the customer location (Wang et al. [35]

relax this assumption).

The number of backorders of subsystem i, Bi, is a random variable that is observed at a random

point in time after steady state is reached. Supplier i chooses a target spare stocking level si for
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Figure 1: Closed loop cycle for repairable items.

subsystem i. Bi and si are related to each other through Bi = (Oi − si)+, where Oi is a stationary

random variable representing the repair pipeline (on-order) inventory. Palm’s Theorem states that

Oi is Poisson-distributed for any repair lead time distribution, with the mean μi ≡ λiLi (Feeney and

Sherbrooke [13]).

It is important to point out that the repair process forms a closed-loop cycle. As the subsystems

are typically very expensive and their lifetimes are very long, we assume that no subsystem is discarded

during the entire support period. Figure 1 illustrates this process. Thus there are a total of N+si units

of subsystem i in the supply chain, but only si of them are owned by the supplier. The fixed failure

rate assumption is in fact an approximation, as the closed-loop cycle with finite population means λi is

a function of the number of working units. However, this approximation is reasonable in our problem

context because the condition E [Bi | si] ≤ λiLi ¿ N is satisfied in practice for most spare subsystems.

This condition ensures that on average the number of subsystems being repaired at any given time is

relatively small, and that the correction due to state-dependency can be safely ignored. Indeed the

fixed failure rate assumption is used in virtually all analytical models in the literature, beginning with

the seminal paper by Sherbrooke [28].

Although the Poisson distribution arising from Palm’s Theorem is appealing, it turns out that

working with integer-valued random variables Oi and Bi as well as the discrete decision variable

si complicates our analysis significantly. This happens because of complexities resulting from the

game-theoretic situations associated with various contracting options. In particular, deriving tractable

mathematical expressions to gain insights into firms’ behavior becomes prohibitively complex. For

this reason, we depart from the usual discrete distribution assumption and model Oi, Bi, and si as

continuous variables. This approach is reasonable in our context since each unit of a supplier’s in-

ventory represents a composite of the various components associated with their particular subsystem.

Such aggregation results in sufficiently high values for μi so that normal approximation for the Poisson
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distribution can be applied (see Table 2 for a range of μi used in a numerical example presented in

Section 6.2). However, the normality assumption is not essential — all our results in the paper are

derived for an arbitrary distribution. To this end, we let Oi be distributed continuously with cdf Fi

and pdf fi, which have nonnegative support [0,∞) with Fi(0) ≥ 0. The distribution of Bi is obtained

from Pr(Bi ≤ x | si) = Pr(Oi ≤ x+ si). Furthermore, E [Bi | si] =
R∞
si
[1− Fi(x)] dx so we obtain

dE [Bi | si]/ dsi = −1 + Fi (si) ≤ 0, d2E [Bi | si]
±
ds2i = fi (si) ≥ 0. (1)

Hence, we see that the expected backorder is decreasing and convex in si.

3.2 Supplier Cost

Supplier i’s total cost to maintain its subsystem, Ci, has fixed and variable components. The fixed cost

contains an additive stochastic term εi. The expected fixed cost can be normalized to zero without

affecting any of our results because it does not play a role in determining optimal supplier decisions and

contract terms, as will become evident in the next section. The variable cost is equal to the unit cost of

a spare subsystem, ci, times si, the number of units in the base stock. εi represents the uncertainty in

total cost that is beyond the supplier’s control, and is assumed to have zero mean and a finite variance.

{εi} are assumed to be uncorrelated across suppliers, i.e., Cov[εi, εj ] = 0 for i 6= j. Furthermore, we

assume that Cov[εi, Bi] =Cov[εi, Bj ] = 0 holds for all i 6= j. The uncertainty in the unit cost is assumed

to be negligible compared to εi. This assumption is based on our discussions with practitioners who

indicated that the uncertainty with respect to fixed costs is of greater importance during the support

stage. The unit cost uncertainty may be significant during the product development stage, but we

do not model it in this paper. In addition, we assume that ci and the distributions of εi and Bi are

common knowledge.1

The total cost of support can be reduced by the dollar amount ai, which is interpreted as the

supplier’s discretionary effort. Hence, Ci = cisi−ai+εi. By exerting effort the supplier incurs disutility

ψi(ai), which is convex increasing (ψ
0
i(ai) > 0, ψ

00
i (ai) > 0) and ψi(0) = 0. In the sequel, we assume a

quadratic functional form ψi(ai) = kia
2
i /2 with ki > 0. This assumption does not fundamentally change

the insights of our model, while generating compact expressions, and for this reason it is commonly

used in the literature (see, for example, Chen [4]). As is customary in the literature, we take the

accounting convention that Ci is observable by the customer and is the basis of reimbursement (see

1That the unit cost is known to the customer is plausible in the defense industry, as most of the current PBL contracts
apply to existing subsystems whose unit cost had to be revealed under pre-PBL relationships. In traditional defense
contracting, the DoD negotiates the price of a spare part or a subsystem based on the reported unit cost.
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Laffont and Tirole [18] p. 55).2

The crucial distinction between the supplier’s actions ai and si is the way each variable contributes

to the performance outcomes; the backorder is influenced by si only, since Bi = (Oi − si)+, while

the total cost is affected by both decision variables ai and si such that Ci = cisi − ai + εi. This

interaction creates asymmetry in how the suppliers’ actions influence outcomes Bi and Ci. Raising

ai reduces the total cost but has no impact on availability, which is driven by component reliability

and repair processes. That said, raising si improves availability but incurs a higher cost. The latter

is the classical cost-availability trade-off seen in repairables inventory models. We do not consider an

alternative formulation, whereby supplier effort impacts product reliability and/or repair capabilities

(thus impacting λi and Li).
3

3.3 Risk Aversion

We assume that all members of the supply chain are risk-averse with expected mean-variance utility

E[Ui(X)] = E[X]− riVar[X]/ 2. (2)

The constant ri ≥ 0 is the risk aversion factor, representing the member i’s inherent attitude towards

uncertainty. Great uncertainties that pervade product development, production, and maintenance

mean significant risks for the firms, and their risk-averse perspective is commonly observed (see Scherer

[27] for discussion and references). The larger the value of ri, the more risk-averse a firm is, whereas

risk neutrality is a special case with ri = 0. This form of utility function has been widely used in recent

operations management literature because of its tractability (Chen and Federgruen [5], Van Mieghem

[34]).

3.4 Performance Measure

The performance metric in our problem is availability Ai, which is defined as the fraction of deployed

systems that have a functional subsystem i at a random point in time. By this definition Ai = 1−Bi/N

because a backorder of each subsystem results in a backorder for the entire system. Similarly, let us

2Note that the supplier is not compensated for his disutility of effort ψi(ai). With this convention, we model effectively
assume that that the cost reduction effort ai is the supplier’s own discretionary decision and hence the customer does not
subsidize the supplier’s internal cost for it. In other words, the customer reimburses only the undisputable direct cost of
maintenance that would withstand the scrutiny of a possible audit.

3Having fixed λi and Li is a reasonable representation of reality in the defense industry. At present, most PBL contracts
are awarded for existing systems whose subsystem specifications (hence reliability) and repair facilities (e.g., specialized
equipment, tools) are already set and cannot be easily altered. Capacity/reliability decisions are typically made at the
product development and initial deployment stages. Once they are made, improvements occur infrequently as the product
re-engineering processes require long lead times and significant up-front investments.
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define the system availability A0 as the fraction of deployed systems that are fully functional. Unlike in

the case of subsystems, this definition in general does not imply A0 = 1−B0/N where B0 =
Pn
i=1Bi,

since it is possible that a system is down due to backorders of more than one subsystem. In fact, one

can see that 1−
Pn
i=1Bi/N ≤ A0 ≤ 1−maxi{Bi}/N . However, a common assumption in the literature

(for example, see Muckstadt [24]) is that the probability of two or more subsystems being down within

the same system at any point in time is negligible. This is a reasonable assumption since the failures of

deployed subsystems typically occur very infrequently. Thus the relation A0 = 1−B0/N holds under

this assumption. As a consequence, we assume that all system failures are caused by single subsystem

failure and there is no ambiguity in assigning accountability for system downtime to a specific supplier.

Because of the one-to-one correspondence between A0 and B0 resulting from the assumption,

the system availability requirement E[A0 | s1, s2, ...sn] ≥ bA0 (e.g., “expected system availability has

to exceed 95%”) is equivalent in our model to a system backorder constraint E [B0 | s1, s2, ...sn] =Pn
i=1E [Bi | si] ≤ bB0. We call bB0 the system backorder target. Additionally, we assume thatPn

i=0 μi >bB0 in order to rule out the trivial case in which s1 = s2 = ... = sn = 0 is optimal.
We note that our focus on performance incentives raises the question of how our definition of

availability can be used to quantify performance. One approach would be to compute the backorder

metric as the time average of the stationary backorder process (indexed by time t), and not the

stationary variable itself. That is, the random variable eBi(τ) ≡ 1
τ

R τ
0 Bi(t)dt could be used, instead of

Bi, as the performance metric. τ is the horizon over which the number of backorders are counted and

averaged. The distinction between these two measures is inconsequential in a risk-neutral setting since

the utilities of the customer and the suppliers are functions of expectation only, and E[ eBi(τ)] = E[Bi].
For the case of risk aversion, however, these two measures diverge because Var[Bi | si] is independent

of τ while Var[ eBi(τ) | si] decreases with τ . The latter is a consequence of the ergodic property of

Bi(t). Therefore, if we were to adopt eBi(τ) as our performance measure, uncertainty with respect to
availability may become insignificant with sufficiently large τ . However, this is not a good representation

of reality because the customer and the suppliers alike express major concerns about performance

variability at any point of time rather than time-averaged performance. For example, the U.S. Air

Force currently uses a confidence interval of availability as its performance metric, for managing the

risk associated with mission readiness. The computation of this interval is based on the steady state

variable Bi (Slay et al. [31]). Thus, in order to reflect current practice for computing performance, we

choose availability defined in terms of steady state backorders as the appropriate performance measure.4

4For completeness, we have investigated the impact of choosing the alternative measure eBi(τ) and found that none of
the qualitative results in this paper change. See the Kim et al. [16].
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3.5 Contract Terms and Utilities

The customer’s payment (transfer) to the supplier i is comprised of three terms: (1) a fixed payment, (2)

reimbursement for the supplier’s cost, and (3) a backorder-contingent incentive payment. Specifically,

it has the form

Ti(Ci, Bi) = wi + αiCi − viBi, (3)

where wi, αi, and vi are the contract parameters determined by the customer. wi is the fixed payment,

αi is the customer’s share of the supplier’s costs, and vi is the penalty rate for each backorder incurred

by the supplier. With vi = 0 and αi = 0, we obtain a fixed-price (FP) contract; with αi = 1 and vi = 0

we obtain a cost-plus (C+) contract with full reimbursement.

Under the assumptions we have laid out so far, supplier i who is given a contract Ti(Ci, Bi) has the

following expected utility:

E [Ui (Ti(Ci, Bi)− Ci)− ψi(ai) | ai, si] = wi − (1− αi)(cisi − ai)− viE [Bi | si]− kia2i /2 (4)

−ri(1− αi)
2Var[εi]/2− riv2iVar[Bi | si]/2.

The first three terms together represent the expected net income of the supplier, while the fourth

term is internal disutility for exerting cost reduction effort. The last two terms, respectively, represent

risk premiums associated with cost and performance uncertainties. Similarly, the customer’s expected

utility is

E [U0 (−
Pn
i=1 Ti(Ci, Bi)) | {ai, si}] = −

Pn
i=1 (wi + αi(cisi − ai)− viE [Bi | si] (5)

+r0α
2
iVar[εi]/2 + r0v

2
iVar[Bi | si]/2

¢
.

That is, the customer’s utility is a function of her total expenditure only. Lastly, each supplier is as-

sumed to have reservation utility determined from its external opportunities. Without loss of generality,

we can be normalize its value to zero.

3.6 Sequence of Events

Our representation of the after-sales support relationship is based on the standard single-location,

steady-state repairables model with a take-it-or-leave-it contract. We do not consider issues arising
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from repeated interactions between the customer and the suppliers in this paper.5

Under these assumptions of the model, the sequence of events is as follows. (1) the customer

offers the suppliers take-it-or-leave-it contracts; (2) the suppliers accept or reject the contracts; (3) the

suppliers who have accepted the contracts take cost reduction measures and set the base stock levels

of their spares inventory; (4) realized costs and backorders are evaluated at the end of the contract

horizon; and finally (5) suppliers are compensated according to the contract terms.

4 Analysis

In the performance-based contracting environment, neither the details of supplier cost nor how the

supplier meets their performance objectives is revealed to the customer. Instead, each supplier is

compensated based on his total realized cost Ci and his realized backorder level Bi. The fact that

both of these contractible variables include random noise raises the issue of incentives. Since Ci and

Bi are functions of the supplier’s cost reduction effort ai and base stock level decision si, the supplier

can partially control the performance related to his subsystem and his compensation by setting ai

and si. However, he may choose (ai, si) that are not optimal from the customer’s point of view. For

example, an opportunistic supplier may choose to minimize his own disutility of efforts by “shirking”

(i.e., choosing low ai and si), hoping that a fortuitous state of the world is realized. The customer’s

task is then to provide appropriate incentives through contract terms that would induce the supplier to

make the desired decisions. The customer’s objective is to maximize her expected utility (or minimize

her negative utility) subject to the system availability requirement, or equivalently the backorder

requirement. In the following discussions, we use the term ”observable” to mean that a variable is both

observable and verifiable and hence can be specified in a contract. We first present the benchmark case

with complete observability, and then consider the private action case. This section concludes with a

comparison of common contracting options.

4.1 First-Best Solution: Complete Observability of Suppliers’ Actions

In this subsection we analyze the problem under the assumption that suppliers’ actions {ai, si} are

both observable, a situation often referred to as the first-best solution because the customer avoids

incentive problems by dictating {ai, si} to the suppliers. This is the benchmark case against which we

5Due to uncertainties in fleet deployment schedules and future support budgets, the DoD is unwilling to sign long-term
contracts (i.e., for the life of the program), and instead typically contracts on a shorter-term basis with annual adjustments.
Suppliers typically conduct multi-period budget planning using a short-term, steady-state model on a rolling horizon basis.
Therefore, making a single-interaction assumption is appropriate. Although pre-contractual bargaining or renegotiation
may exist in practical situations, we do not formally model them in this paper.
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can evaluate the efficiency of other contracts. The customer’s problem is

(AFB) min
{wi,αi,vi,ai,si}

E [U0 (
Pn
i=1 Ti(Ci, Bi)) | {ai, si}] ,

s.t.
Pn
i=1E [Bi | si] ≤ bB0, (AR)

E [Ui (Ti(Ci, Bi)− Ci)− ψi(ai) | ai, si] ≥ 0 ∀i, (IRi)

0 ≤ αi ≤ 1, ai, si ≥ 0 ∀i.

The expected utility expressions are given by (4) and (5). (AR) is the system availability require-

ment constraint expressed in terms of backorders, and (IRi) is the individual rationality constraint that

ensures supplier i’s participation. As is typical in moral hazard problems, each (IRi) constraint binds

at the optimal solution. That is, the customer is able to extract all of the surplus from the suppliers by

setting appropriate fixed payments {wi}. Let θ be the Lagrangian multiplier of the customer’s problem

(AFB). The following proposition specifies the first-best solution.

Proposition 1 When the suppliers’ decisions are observable and contractible, the optimal contract

specifies the following supplier decisions (ai, si):

ai = 1/ki, (6)

si(θ) = F−1i (max{1− ci/θ, 0}) , (7)Pn
i=1E [Bi | si(θ)] = bB0. (8)

The solution {aFBi }, θFB and {sFBi } =
©
si(θ

FB)
ª
is unique and is obtained by offering a non-

performance-based, risk-sharing contract such that vFBi = 0 and

αFBi = ri/ (r0 + ri) (9)

provided that r0, ri > 0. Supplier i’s expected utility is zero, whereas the customer’s expected utility isPn
i=0

³
−cisFBi + 1

2ki
− 1
2
r0riV ar[εi]
r0+ri

´
.

We note that {sFBi } and θFB are determined simultaneously from equations (7) and (8). Let us

first consider the optimal risk sharing of cost, represented by (9). It is a modified version of the Borch

rule (see Bolton and Dewatripont [2]). To gain insights, it is useful to consider extreme cases. If r0 > 0

and ri = 0, i.e., if supplier i is risk-neutral but the customer is not, αi = 0. This outcome corresponds

to a FP contract; since the customer is risk-averse whereas the supplier is not, the customer transfers

all risks to the supplier. At the opposite end, consider r0 = 0 but ri > 0, i.e., only the customer
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is risk-neutral. In this case αi = 1, meaning that the C+ contract is used. Although it may sound

counterintuitive that the C+ contract achieves the first-best solution, we should recall that incentives

are not an issue in the current setting because the suppliers’ actions are observable and contractible.

The role of the C+ contract is merely to mitigate the suppliers’ reluctance to participate in the trade

(the (IRi) constraint). The risk-neutral customer can absorb all risks without efficiency loss. When

both r0 and ri are positive, the customer and the supplier i share the risk according to (9), i.e., based

on the supplier’s risk aversion relative to that of the customer. For the remaining case r0 = ri = 0

(which is not covered by Proposition 1), risk sharing is not an issue and there is an infinite number of

(wi,αi, vi) combinations which are optimal, i.e., the solution is degenerate.

We now focus on the customer’s first-best expected utility in which there are three terms for each

supplier. The first term (−cisFBi ) is the cost of owning sFBi units in the supplier’s spares inventory.

The second term 1/2ki is the net savings due to the supplier’s cost reduction efforts. The last term

1
2
r0ri
r0+ri

Var[εi] can be interpreted as the joint risk premium between supplier i and the customer and it

is positive only if they are both risk-averse. It represents the inefficiency created by a trade-off between

the customer’s desire to protect herself from risk and to facilitate the suppliers’ participation, which

require some degree of risk-sharing through cost reimbursement.

Unlike cost risk Var[εi], performance risk Var[Bi | si] poses no trade-off between the customer and

the suppliers; it can be eliminated by setting vi = 0. In other words, all parties mutually benefit without

the performance clause in the first-best case. If vi > 0, a risk-averse supplier demands a premium due

to the possible penalty associated with the stochastic realization of backorders. This leads to income

fluctuations to a risk-averse customer. Both concerns disappear when vi = 0 without incurring extra

cost because the contractibility of the suppliers’ actions {si} implies that the actions can be perfectly

enforced even without performance incentives. Thus, the customer’s attitude toward cost uncertainty

and performance uncertainty differ. This key observation will continue to hold even when the suppliers’

actions are unobservable and hence not contractible.

4.2 Private Actions: The Suppliers’ Problem

We now turn to the situation in which suppliers’ actions are unobservable to the customer — which is

to be expected in a PBL environment. Given the contract parameters (wi,αi, vi), supplier i chooses

(ai, si) that maximize his expected utility (4). That is, he solves

max
ai,si

wi − (1− αi)(cisi − ai)− viE [Bi | si]− kia2i /2− ri(1− αi)
2Var[εi]/2− riv2iVar[Bi | si]/2.
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A distinctive feature of this problem is that Var[Bi | si] is a function of the decision variable si. This is a

departure from the common assumption found in most moral hazard models that only the mean of the

performance measure is affected by the decision variable. In our model the dependence of Var[Bi | si]

on si is unavoidable. As will become evident, this feature of our model complicates the analysis

significantly but at the same time creates new dynamics. The supplier’s problem is generally not

quasiconcave in si, but unimodality can be guaranteed under a mild parametric assumption.

Proposition 2 Suppose αi < 1 and vi[1−F (0)] ≥ (1−αi)ci. Then there is a unique interior optimal

solution to the supplier’s problem in which supplier i chooses a∗i and s
∗
i such that

a∗i = (1− αi) /ki, (10)

vi[1− Fi(s∗i )] + riv2i Fi(s∗i )E[Bi | s∗i ] = (1− αi)ci. (11)

The condition we specify in Proposition 2 ensures that the supplier’s utility function is increasing

at si = 0. The condition has to be checked against the optimal solutions of αi and vi, which are

determined by the customer (these solutions are presented in the next subsection). We have verified

through numerical examples that the condition is mild in the sense that it is violated only under

extreme parameter settings (e.g., when the customer’s risk aversion factor r0 is orders of magnitude

greater than that of the supplier, ri). We henceforth assume that the condition in Proposition 2 is

always satisfied. From the Proposition we obtain the following results, which offer insights into the

impact of contract parameters on optimal decisions.

Corollary 1 Suppose the conditions in Proposition 2 hold. Then

(i) ∂s∗i /∂ri > 0, ∂a
∗
i /∂ri = 0.

(ii) ∂s∗i /∂αi > 0, ∂a
∗
i /∂αi < 0.

(iii) ∂s∗i /∂vi > 0, ∂a
∗
i /∂vi = 0.

From (i) we see that the more risk-averse the supplier, the greater the optimal inventory position he

chooses. By investing in more spares, the supplier cuts down the likelihood of backorder occurrences,

thereby reducing the variance associated with performance. Hence, a risk-averse supplier is inclined to

increase si to protect himself from performance uncertainty. To put it another way, increasing si is a

preventive measure that can be taken by the supplier to avoid performance risk. A similar mechanism,

however, does not exist for avoiding cost risk, as evidenced by the fact that the optimal cost reduction

effort a∗i is independent of the degree of risk aversion ri (see equation (10)).
6

6This result is due to the assumption that the stochastic term εi enters additively into the supplier’s total cost
Ci = cisi − ai + εi; the effort reduces the mean of Ci but not the variance. Under this standard assumption the supplier
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Parts (ii) and (iii) of Corollary 1 explain optimal supplier responses to the contract terms αi and

vi. If the customer increases the reimbursement ratio αi, the supplier becomes less concerned with cost

overruns and hence does not exert as much cost reduction effort as he might otherwise (∂a∗i /∂αi < 0).

At the same time, his perceived effective unit cost of inventory ((1 − αi)ci on the right-hand side of

(11)) decreases, making it desirable to stock more. With respect to the backorder penalty vi, a larger

vi means a stronger incentive to decrease backorders so s
∗
i increases. However, vi does not affect a

∗
i ,

as it serves only as an incentive to reduce backorders and not the total cost. This behavior is, in part,

a consequence of our modeling assumptions that the supplier’s effort ai affects only the cost, and that

the uncertainties in cost and in performance are independent of each other.

4.3 Private Actions: The Prime’s Problem

Anticipating that the suppliers will respond by choosing {ai, si} according to (10) and (11), the cus-

tomer selects contract terms {wi,αi, vi} that achieve minimal total disutility subject to the backorder

constraint. With the right incentives, each supplier will voluntarily choose (ai, si) that match the cus-

tomer’s expectation, even though the suppliers’ decisions are not directly verified. This voluntary action

is expressed in terms of incentive compatibility (IC) constraints, which are added to the customer’s

problem formulation as follows.

(ASB) min
{wi,αi,vi}

E [U0 (
Pn
i=1 Ti(Ci, Bi)) | {a∗i , s∗i }] ,

s.t.
Pn
i=1E [Bi | s∗i ] ≤ bB0, (AR)

E [Ui (Ti(Ci, Bi)− Ci)− ψi(ai) | a∗i , s∗i ] ≥ 0 ∀i, (IRi)

(a∗i , s
∗
i ) ∈ argmaxE [Ui (Ti(Ci, Bi)− Ci − ψi(ai)) | ai, si ≥ 0] ∀i, (ICi)

0 ≤ αi ≤ 1 ∀i.

Similar to the first-best case, it can be demonstrated that the (IRi) constraints bind at the optimum,

so that we can simplify the problem by solving for values of {wi} that leave the suppliers with zero

expected utility. Using the Lagrange multiplier θ for the backorder constraint, we can write n individual

Lagrangian functions. Moreover, it is convenient to convert the Lagrangian into a function of (αi, si, θ)

rather than a function of (αi, vi, θ), using the monotonicity result ∂s
∗
i /∂vi > 0 from Corollary 1. Using

has no control over the variability of cost, so his attitude toward risk does not factor into the decision about a∗i .
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(10), we obtain

Li(αi, si, θ) = cisi + θE [Bi | si]− (1− αi)/ki + (1− αi)
2/ (2ki) +

¡
r0αi

2 + ri(1− αi)
2
¢
V ar[εi]/2

+ (r0 + ri) [vi(αi, si)]
2Var[Bi | si]/2, (12)

whereby

vi(αi, si) =

⎧⎨⎩
(1−αi)ci
1−Fi(si) if ri = 0,

1−Fi(si)
2riFi(si)E[Bi | si]

³
−1 +

q
1 + 4rici(1−αi)Fi(si)E[Bi | si]

[1−Fi(si)]2
´

if ri > 0,
(13)

from (11). We readily notice that the optimal performance incentive vi(αi, si) is a decreasing function

of αi; in order to have the supplier choose si, the customer may decrease vi while increasing αi, or vice

versa. Thus, vi, the incentive to increase the stocking level, and 1− αi, the incentive to reduce costs,

are complements. This observation plays a key role in a later analysis and will be discussed further.

We denote the optimal solution pairs with superscripts SB, {αSBi , sSBi }. Unfortunately, (12) is not

generally quasiconvex and hence is not necessarily unimodal. The analytical specification of sSBi is

intractable even with αi fixed, thereby requiring numerical analysis. To gain additional insights while

circumventing this difficulty, in the next section we focus on several special cases and later analyze the

original problem numerically.

4.4 Cost Plus (C+) vs. Fixed Price (FP) vs. Performance Contracts

Before delving into the analysis of optimal contracts for special cases, we pause here to evaluate the

effectiveness of the most widely used contract forms, C+ (αi = 1, vi = 0) and FP (αi = vi = 0), and

compare them with performance contracts (vi > 0). Consistent with other literature analyzing and

comparing these contracts (see, for example, Scherer [27]), our model indicates that C+ and FP are

polar opposites when it comes to providing cost reduction incentives. With a FP contract a supplier

becomes the residual claimant and hence it is in his interest to reduce costs as much as possible. In

terms of cost risk, the FP contract gives perfect insurance to the customer because the supplier bears

all risks from cost under- or overruns. In contrast, the C+ contract shifts all risks to the customer, as

she has to reimburse whatever the supplier’s realized cost may be. At the same time, the C+ contract

provides no incentive for the supplier to reduce costs.

Despite the prevalence of C+ and FP contracts in practice, they do not induce the desired supplier

behavior when a performance constraint is present and the customer cannot observe suppliers’ actions.

This becomes clear after inspecting the supplier’s utility function (4). With the FP contract, it is in
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Contract
type

No performance-based compen-
sation (v = 0)

Performance-based compensa-
tion (v > 0)

Pure per-
formance
(α = w = 0)

The customer is unable to extract all
supplier surplus.

Fixed price
(α = 0)

While achieving the first-best cost
reduction effort aFB, the supplier is
incentivized to reduce s as much as
possible.

First-best can be achieved with the
appropriate choice of w and v un-
der risk neutrality. First-best is not
achieved under risk aversion (α > 0)
in general.

Cost plus
(α = 1)

The supplier exerts no cost reduction
effort (a = 0) and is indifferent to-
ward s.

The supplier exerts no cost reduction
effort (a = 0) and tries to increase s
as much as possible.

Table 1: Incentive effects of various contract combinations.

the supplier’s interest to reduce not only effort ai but also spares inventory si as much as possible, thus

violating the minimum availability desired by the customer. A C+ contract, on the other hand, has the

effect of making the supplier indifferent to the choice of si. Clearly, inducing proper actions requires

performance incentives. The simplest contract in this category (the “pure performance contract”) has

αi = wi = 0 and vi > 0. Indeed, such a contract can induce the supplier to choose the optimal inventory

level si. But it is inefficient because it leaves a positive residual surplus to the suppliers (i.e., the (IR)

constraint does not bind in general). Interestingly (to be demonstrated in the following section) a

contract with wi > 0 and vi > 0 can achieve the first-best solution. But this happens only if all parties

are risk-neutral, as proper risk sharing requires αi > 0. Thus, the optimal contract will have all three

components: a fixed payment, a cost-sharing clause, and a performance incentive. Table 1 summarizes

supplier behavior under all of these contract combinations.

5 Special Cases

5.1 Risk-Neutral Firms

Many difficulties associated with the analysis disappear if all suppliers and the customer are risk-neutral,

which may be the case in practice if the customer and the suppliers are all very large, well-diversified

corporations. In this case, as we show below, even when actions are unobservable, the first-best

solution is achieved with a contract that is a simple combination of a fixed payment and a performance

component (henceforth called FP/performance). This solution highlights the performance allocation

aspect of our problem at the expense of ignoring the issue of risk-sharing.

Proposition 3 With r0 = r1 = ... = rn = 0, the first-best solution is achieved if and only if

(i) α1 = α2 = ... = αn = 0,
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(ii) wi = cis
FB
i + θFBE[Bi | sFBi ]− 1/2ki,

(iii) v1 = v2 = ... = vn = θFB

where {sFBi } and θFB are computed from (7) and (8). The supplier i’s expected utility is zero while

the customer’s expected utility is
Pn
i=1

¡
−cisFBi + 1/2ki

¢
.

The preceding result is not entirely new: it is often the case in other principal-agent models that

the first-best solution is achieved with an FP/performance contract between two risk-neutral firms

when there is only one effort variable (for example, see Bolton and Dewatripont [2]). Having two effort

variables ai and si as well as multiple suppliers does not change this basic result. First-best is obtained

because αi and vi under risk neutrality serve only as incentives and not as instruments for providing

insurance against risk, eliminating the trade-off between the two factors.

There is, however, an interesting deviation from the classical analysis involving just one supplier.

It is captured in part (iii), which can be interpreted to mean that every backorder from heterogeneous

subsystems has equal importance regardless of the subsystem unit price ci. Thus, performance incen-

tives are equal across suppliers. In our additively separable backorder model (B0 =
Pn
i=0Bi) this makes

intuitive sense, because the customer does not discriminate between a backorder of a $1,000 item and

that of a $10 item; hence each item contributes equally to the downtime of the system. However, it

would be erroneous to conclude that item unit costs {ci} have no effect on determining the uniform

performance incentive v1 = ... = vn = θFB because they determine θFB indirectly through the joint

satisfaction of (7) and (8). The fact that penalty rates are linked across suppliers continues to hold in

the risk-averse case, although the equality as in (iii) can no longer be sustained because of the suppliers’

varying attitudes toward risk. The policy implication of this result is to treat all suppliers equally with

respect to the performance incentive as long as risk aversion is not present.

5.2 Risk-Averse Firms: Cases with Partial Observability

As the next step in gaining insights we now analyze the problem under a simplifying assumption that

either {si} or {ai} are observable and contractible, but not both. As will become evident, these special

cases serve as bounds on the optimal contract parameters under conditions of complete unobservability

and hence are useful in understanding the structure of the problem. We shall first consider the case

when {si} are observable but {ai} are not. This may happen if the suppliers utilize consignment

inventory management for all subsystems (which is sometimes the case in practice) so that inventories

are visible to the customer. As si can now be dictated by the customer, there is no need to provide the

performance incentive vi, i.e., the optimal contract has vi = 0 for all i. After determining {wi} from
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the binding (IR) constraints, the customer’s problem (A0SB) becomes

(A0SO) min
{αi,si}

Pn
i=1

¡
cisi − (1− αi)/ki + (1− αi)

2/ (2ki) +
¡
r0α

2
i + ri(1− αi)

2
¢
Var[εi]/2

¢
,

s.t.
Pn
i=1E [Bi | si] ≤ bB0.

The optimal contract (denoted by the superscript SO) is as follows.

Proposition 4 When {si} of all suppliers are observable to the customer but {ai} are not, it is optimal

to specify the contract terms according to

(i) αSOi = kiri/ (1/Var[εi] + ki(r0 + ri)) < αFBi ,

(ii) wSOi = (1− αSOi )cis
FB
i − (1− αSOi )2/ (2ki) + ri(1− αSOi )2Var[εi]/2, and

(iii) vSOi = 0.

sSOi = sFBi is imposed on supplier i while the contract terms induce the cost reduction effort aSOi =

(1 + kir0V ar[εi]) /
¡
ki + k

2
i (r0 + ri)V ar[εi]

¢
.

Even though one of the supplier’s actions is observable to the customer, we see that the first-best

solution cannot be achieved and hence there are inefficiencies due to incentive issues. Namely, there is

less cost sharing than is optimal under the first-best solution (αSOi < αFBi ) because the customer has

to provide more incentive to reduce costs than would have been the case if she dictated ai, and this

is achieved by exposing the supplier i to more risk (smaller αi). We see that α
SO
i exhibits intuitive

properties: as Var[εi] approaches infinity, α
SO
i increases asymptotically to the first-best optimal risk

sharing ratio αFBi because the supplier’s effort ai becomes overshadowed by huge cost uncertainty. It

is also clear that αSOi moves toward zero (toward an FP contract) as Var[εi] decreases. The relative

risk aversion ratio r0/ri is another major determinant of α
SO
i which is similar to the first-best case: if

the ratio is small, αSOi is on the C+ side (closer to 1) whereas a large ratio implies that αSOi is on the

FP side (closer to 0).

The other possibility is when {ai} of all suppliers are observable but {si} are not. This situation

could arise in government contracting where a significant amount of information on supplier costs must

be divulged to the customer.7 We denote the optimal solution in this case with the superscript AO.

As before, {wi} are determined from the binding (IR) constraints. The customer’s problem becomes

(A0AO) min
{ai,αi,si}

Pn
i=1

³
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
V ar[εi]/2 + (r0 + ri) [vi(αi, si)]

2Var[Bi | si]/2
´

s.t.
Pn
i=1E [Bi | si] ≤ bB0

7The Truth in Negotiations Act (TINA) has been applied to many government contracts since the 1960’s. It requires
suppliers to reveal cost data to the government (customer) in order to avoid excessive payments to the suppliers. In most
PBL contracts, however, TINA is waived.
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It is clear that aAOi = aFBi as in (6) but tractable expressions for αAOi and sAOi do not exist. Despite this

shortcoming, αAOi can be evaluated analytically in the special case with only one supplier, a scenario

which we present next.

5.3 Single Risk-Averse Supplier

In this subsection we assume that there is only one supplier, so we drop the subscript i. Not only is such

a firm-to-firm setting consistent with a majority of supply chain contracting models in the literature,

but it is also a commonly observed situation that is found in PBL practice. For example, a setting in

which maintenance of a single key component is outsourced or a military customer contracts directly

with a subsystem supplier fits this description (e.g., the U.S. Navy’s PBL contract with Michelin for

tires or commercial airline “power by the hour” contracts with engine manufacturers like GE and

Rolls Royce). As we will see shortly through numerical experiments, insights from this simpler model

continue to hold for the general assembly structure with multiple suppliers.

With a single supplier, it may appear that the customer should set incentives so that E
£
B | sSB

¤
=bB0 holds. In particular, this would be the case if the customer’s objective funciton were increas-

ing monotonically in s, which is an intuitive property. Unfortunately, this intuition is not entirely

correct. As noted in the previous section, the analysis of risk-averse firms is complicated by the non-

quasiconcavity, implying that the Lagrangian (12) can be bimodal. Thus, the customer may prefer to

have more inventory than follows from E
£
B | sSB

¤
= bB0. This, however, happens only in extreme cases

in which the customer is several orders of magnitude more risk-averse than the supplier and therefore

wants to protect herself from performance risk with a very large inventory. In most of our numerical

examples, which cover a wide range of parameter combinations, the customer’s objective function is,

indeed, increasing monotonically in s. Therefore, we will henceforth assume that the problem param-

eters are such that the backorder constraint is binding, so that the optimal inventory position sSB

satisfies E
£
B | sSB

¤
= bB0. Given that v is completely determined by α and s according to (13), the

only variable to be determined is the cost-sharing parameter α so that our problem is simplified to a

one-dimensional optimization.

Lemma 1 The customer’s Lagrangian (12) is convex in α when s is fixed.

It follows that there is a unique αSB that minimizes the customer’s objective function. There

exists a closed-form solution, but it is quite complex (see the Appendix) and inspection alone does not

provide ready insights. Instead, we focus on understanding how the parameters of the contract change

when cost uncertainty Var[ε] changes. There are several motivations behind this analysis. First, cost

uncertainty is of primary importance in practice because it is often harder to estimate than performance
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uncertainty. Second, there are significant changes in cost uncertainty over the product life cycle (while

performance uncertainty can be relatively more stable) and therefore there is a need to understand

how contractual terms should change in response. Finally, as will be seen shortly, by varying cost

uncertainty we are able to obtain insights that sometimes differ fundamentally from insights in the

classical literature on moral hazard problems with multitasking.

Proposition 5 Suppose r0, r > 0 and that s
SB is fixed by the backorder constraint E

£
B | sSB

¤
= bB0.

Then αSO < αSB < αAO and vSB > vAO > vSO = 0. Further, let `(r0, r) = ∂L/∂α|α=αFB where L is

the customer’s Lagrangian defined in (12). Function `(r0, r) increases in the ratio r/r0 and crosses zero

exactly once. The optimal contract parameters αSB and vSB are related to αFB and vFB as follows.

(i) If `(r0, r) > 0, α
SB < αFB, dαSB/d(Var[ε]) > 0, and dvSB/d(Var[ε]) < 0.

(ii) If `(r0, r) = 0, α
SB = αFB, vSB = vFB, and dαSB/d(Var[ε]) = dvSB/d(Var[ε]) = 0.

(iii) If `(r0, r) < 0, α
SB > αFB, dαSB/d(Var[ε]) < 0, and dvSB/d(Var[ε]) > 0.

First, we note that the optimal cost sharing ratio αSB is bounded above by αAO, the optimal

ratio when the cost reduction effort a is observable. In the current case the effort is not observable

and therefore the customer has to reduce α to provide more incentives to reduce costs. The side

effect is that the supplier’s effective unit cost (1 − α)c increases, thus requiring a higher performance

incentive v to induce the desired inventory position sSB. Therefore, vSB > vAO. Second, we note

that αSB is bounded below by αSO, which we derived by assuming that the inventory position s is

observable. When s is not observable, the customer needs to provide a higher performance incentive,

vSB > vSO = 0. But doing so exposes both the customer and the supplier to performance risk (recall

the performance risk premium is increasing in v for both the customer and the supplier; see (4) and

(5)), thus creating inefficiency that can be mitigated by increasing α. Higher α reduces the effective

unit cost (1−α)c for the supplier and allows him to achieve the inventory position sSB with a smaller

v. Hence, increasing α above αSO is optimal.

A comparison of the second-best solution with the first-best solution is more complex. It is in-

strumental to consider two cases based on the relative risk aversion of the customer and the supplier

separately. Since function `(r0, r) increases in the ratio r/r0 and crosses zero exactly once, the condi-

tion `(r0, r) > 0 in (i) can be interpreted as r Â r0, where the symbol “Â” means that the supplier

is relatively more risk-averse than the customer. Similarly, `(r0, r) < 0 can be interpreted as r ≺ r0,

whereby the customer is relatively more risk-averse than the supplier. We first consider the former

situation (which may arise if the customer is a bigger and more diversified company than the supplier).

We believe that this case is more natural in practice. Figure 2 illustrates the results in (i).

We make the following observations from these figures. First, αSB < αFB, and the unobservability
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vSO=0

αΑΟαΑΟ

vAOvAO

vSBvSB

αSBαSB

0

1
α

(FP)

0

v

][εVar ][εVar

αFB = r/(r0+r)

vFB=0

αSO

Less risk and
cost reduction
incentive to
supplier;
More risk to 
customer

More risk and
cost reduction
incentive to
supplier;
Less risk to
customer

Cost reduction important Risk sharing important

More performance
incentive

(C+)

Figure 2: `(r0, r) > 0, the supplier is relatively more risk-averse than the prime.

of effort and inventory results in less cost reimbursement than under the first-best solution. Second,

αSB increases with Var[ε] and asymptotically approaches αFB. With large cost uncertainty, the risk-

averse supplier is reluctant to participate in the trade, so the customer has to provide insurance by

reimbursing a large proportion of the supplier’s costs. Thus the supplier has less incentive to make

efforts to reduce costs. On the other hand, when Var[ε] is small, providing cost-reduction incentives

becomes more important. Third, the gap between αSB and αSO decreases in Var[ε]. This gap can be

interpreted as the additional inefficiency attributed to performance risk. When cost uncertainty is large,

performance uncertainty Var[B | sSB] is negligible and the gap between SB and SO disappears. The

gap between αSB and αAO is interpreted similarly. Finally, vSB decreases with Var[ε], asymptotically

approaching v(αFB, sFB). With higher cost uncertainty, the performance incentive is lowered.

Overall, we observe that αSB and vSB move in the opposite directions as Var[ε] increases because

the customer increases α to mitigate the supplier’s cost risk (we recall that the supplier is more risk-

averse than the customer in the current setting). As a result, the supplier’s effective unit cost (1−α)c

is reduced, making it less expensive to stock inventory and allowing for a smaller incentive v. Therefore

increasing 1−α has the same effect on inventory as increasing v; these two incentives are complements

with respect to s.

This conclusion is similar to the one presented in Holmström and Milgrom’s [14] original multitask

principal-agent model in which increasing variability in one output leads to weaker incentives for

all outputs. Yet, the mechanism by which we arrive at our conclusion is different. Specifically, in

Holmström and Milgrom [14], raising one effort raises the marginal disutility of raising another effort,

which is not the case in our model (since the supplier’s disutilities (1−α)cs and ka2/2 are independent

of each other). Another important assumption in their model is that the outcomes are affected by

exactly one effort each, so there is a one-to-one correspondence between an incentive and an effort. In

contrast, our model has an outcome C that is a function of both variables a and s via C = cs− a+ ε.
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Figure 3: `(r0, r) < 0, the prime is relatively more risk-averse than the supplier.

In this respect, the model closest to ours is found in Bolton and Dewatripont ([2], pp. 223-8) where

there is direct conflict between the tasks, because exerting one effort positively affects one outcome but

negatively affects the other.

Next, we consider the case in which the customer is relatively more risk-averse than the supplier,

r ≺ r0 (case (iii) in Proposition 5). Figure 3 is an analog of Figure 2. Compared to the previous

discussion, αSB and vSB exhibit exactly opposite behavior. Now αSB > αFB and αSB decreases in

Var[ε] while vSB increases in Var[ε]. This fundamental difference arises because, unlike in the previous

case, it is now the customer who needs more protection from cost risk. In the presence of large cost

uncertainty, this can be achieved by choosing small α, thereby transferring most of the risk to the

supplier. A nonintuitive consequence of this outcome is that the supplier is incentivized more to reduce

his cost and increase his stocking level when cost uncertainty is great. Therefore, the customer’s concern

for her own risk protection reverses contractual terms and comparative statics. The complementarity

between 1 − αSB and vSB still remains, however: as 1 − αSB increases, so does vSB. We note that

results when the customer is more risk-averse than the supplier are somewhat contrary to what we

have come to expect from the existing literature on multitasking where the customer is often assumed

to be risk-neutral.

6 Examples with Multiple Risk-Averse Suppliers

In this section we present a numerical analysis of the problem with multiple suppliers. We illustrate

our findings through two examples. First, we consider two suppliers that differ by at most one of the

parameters {ri,Var[εi]}. This example isolates the trade-off between incentives and risk. The second

example is based on actual maintenance data from a fleet of military fighter aircraft. This second data

set illustrates how our model can be applied in practice to support long-term strategic planning and
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contract negotiations.

6.1 Example 1: Two Symmetric Suppliers

In this example we assume that all parameter values are symmetric across the suppliers except for either

{ri} or {Var[εi]}. Default values are μi = σ2i = 10, ci = 1, ki = 0.2, r1 = 0.1, Var[ε1] = 10, and
bB0 = 4.

A normal distribution of the inventory on-order is chosen, in keeping with our continuous approximation

for the underlying inventory model. We vary supplier 2’s risk aversion r2 and cost uncertainty Var[ε2] as

well as the customer’s risk aversion r0 in order to observe their effects on {αSBi , vSBi } and {aSBi , sSBi }.

We note that the first-best inventory positions are sFB1 = sFB2 = 8.725. Table 4 (see Appendix)

summarizes the results of varying r2 and r0.

We observe only minimal changes in sSB1 and sSB2 as parameters change, with the greatest change

occurring when r0 is large. In contrast, α
SB
2 changes widely and so does vSB2 , but in the opposite

direction. As we observed in the single supplier case earlier, the complementarity between the cost

reduction incentive 1− αi and the performance incentive vi continues to exist in the multiple supplier

setting. {sSBi } do not vary much because they are subject to an externality, namely, the overall

backorder constraint. Although {sSBi } can be used as instruments for protection from performance

risk, their ranges are limited by the constraint. Hence, risk allocation (including allocation of the

performance risk) is primarily achieved through varying {αi}.

From the table we also confirm that αSB2 > αFB2 for a relatively large ratio r0/r2, while the opposite

is true for a small ratio r0/r2, just as predicted by Proposition 5 but for a single supplier. Furthermore,

we notice that αSB2 increases monotonically in r2 for small r0 (= 0.01), but we do not observe the same

monotonicity when r0 is large (= 1): α
SB
2 initially decreases from 0.436 to 0.430 but then increases to

0.539. The explanation is as follows. When r0 is small, increasing αi tends to reduce both the cost

and performance premiums (see (12) and (13)). However, when r0 is large, tension exists between the

two risk premium terms; although increasing αi reduces the performance risk for both the customer

and the suppliers, it exposes the customer to the risk of greater cost. These two opposing forces break

down the monotonicity.

Next, Table 5 (see Appendix) illustrates the effect of varying Var[ε2]. Once again we observe that

sSB2 is not very sensitive to changes in Var[ε2], but that α
SB
2 is. From the table, we see that αSB2

moves toward αFB2 as Var[ε2] increases (regardless of the value of r0), confirming the prediction from

Proposition 5 for the single supplier case. In addition, numbers in the table indicate that ∂αSB2 /∂r0 > 0

for small Var[ε2] whereas ∂α
SB
2 /∂r0 < 0 for large Var[ε2] (this can be proven analytically in the single

supplier case, but we omit the derivation). In other words, when cost uncertainty is relatively low, a

more risk-averse customer moves toward a C+ contract and takes up a larger portion of the cost risk,
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a nonintuitive result. What actually happens is that the performance premium is more important in

this situation, outweighing the concern for the cost risk. Clearly, in the presence of performance risk,

the intuition regarding cost sharing is not always straightforward.

Finally, Table 6 (see Appendix) shows how the optimal contract parameters and the suppliers’

actions vary as the overall backorder constraint changes. In this example, suppliers 1 and 2 are

asymmetric only in their attitude toward risk: r1 = 0.1 and r2 = 1, while r0 = 0.5. As expected,

vSB1 and vSB2 decrease as bB0 increases, since a less stringent backorder constraint allows for smaller
inventories and hence reduces the need for performance incentives. Changes in αSB1 and αSB2 are

relatively small. We see that distortion in {sSBi } becomes larger as we relax the constraint (measured

by the quantity (sSB2 − sSB1 )/sFB1 , it grows from 2.94% at bB0 = 1 to 9.75% at bB0 = 7). Intuitively, this
happens because the less stringent backorder constraint results in a larger range in which inventories

can be adjusted without violating the constraint. However, the magnitude of the distortion is still

small, confirming our previous observation that the presence of the backorder constraint limits the

customer’s contract parameter choices (α and v) such that they induce the base stock levels close to

the first-best values {sFBi }.

6.2 Example 2: Actual Data for a Fleet of Military Aircraft

Our second numerical example is based on a real-life maintenance data for a fleet of military fighter

aircraft. A total of N = 156 aircraft are deployed in the fleet. We obtained data on unit costs,

daily failure rates and repair lead times for a representative collection of 45 line replaceable units

(”parts”). To utilize our model we aggregate data into five subsystem groups: avionics (a), engines

(e), landing gear (l), mechanical (m), and weapons (w), based on descriptions of each part. We employ

the following technique to obtain unit costs, failure rates and lead times for these subsystems. First,

we assign each part to one of the groups, and compute the subsystem’s mean inventory on-order as

μi =
Pni
j=1 λjLj , where i ={a,e,l,m,w} and ni = the number of parts within subsystem i. Thus, we treat

each subsystem as a “kit” which is replaced whenever any part within it fails. Subsystem unit costs are

inferred from an output generated by the proprietary commercial software from MCA Solutions, Inc.

(http://www.mcasolutions.com). Given a system availability target, this software calculates optimal

stocking levels over multiple echelons and indentures while directly considering each part-location. By

aggregating its output, we can infer the effective subsystem unit costs by dividing the dollar amount

invested in inventory resources for each subsystem (
Pni
j=1 cjsj) by the total number of stocking units

within it (
Pni
j=1 sj). For this example the availability target of 95% was chosen. Table 2 summarizes

the inferred values of {μi} and {ci} using this heuristic. We note that {μi} are an order of magnitude

smaller than N , thus satisfying the condition E[Bi | si] ¿ N needed to apply the fixed failure rate
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Subsystem avionics (a) engine (e) landing gear (l) mechanical (m) weapons (w)

μi 10.46 19.36 13.72 16.87 8.43

ci (in $1,000) 21.52 6.60 31.08 8.52 14.85

Table 2: μi and ci for each subsystem.

ρi = 0.02 ρi = 0.1

i a e l m w a e l m w

αSBi 0.54 0.67 0.88 0.41 0.51 0.63 0.35 0.92 0.48 0.75

vSBi 5.77 8.11 1.46 6.49 4.35 5.01 12.61 1.14 5.97 3.06

aSBi 99.74 21.66 38.15 50.58 73.10 79.14 43.11 25.01 44.04 37.52

sSBi 9.29 23.12 10.51 19.26 8.66 9.35 22.77 10.39 19.27 8.96bAi 98.75% 99.69% 97.69% 99.54% 99.33% 98.77% 99.65% 97.63% 99.54% 99.42%

IIRi 200.0 152.6 326.8 164.1 128.6 201.2 150.3 322.9 164.2 133.1

NCRi 76.6 18.1 35.8 35.6 55.1 64.6 29.0 24.0 32.7 32.8

CRPi 23.4 1.5 68.6 2.8 17.6 557.3 15.1 1669.3 68.1 318.8

PRPi 35.9 10.0 19.8 15.9 16.1 26.7 28.2 12.2 13.4 7.0

Table 3: Optimal contract terms and suppliers’ actions. The dollar figures are in thousands. IIR stands for investment in
resources and is equal to cis

SB
i . NCR is −aSBi + 1

2ki(a
SB
i )2, the net cost reduction. CRP is the residual cost risk premium,

1
2
(r0(α

SB
i )2 + ri(1 − αSBi )2)Var[εi], and PRP is the residual performance risk premium, 1

2
(r0 + ri)(v

SB
i )2Var[Bi|sSBi ].

System availability target is 95%.

approximation.

To determine values of parameters {ki} and {Var[εi]}, we use the following approach. Let Ki be

the supplier i’s fixed cost such that Ki = E[Ki] + εi. For each supplier, we assume that the expected

fixed cost is 50 times higher than the unit cost ci. The maximum dollar amount of cost reduction

aFBi = 1/ki is assumed to be 0.2E[Ki]. Thus, ki = 1/(10ci). For the sake of simplicity, we also assume

that the coefficient of variation ρi ≡
p
Var[Ki]/E[Ki] is the same across suppliers. We infer the risk

aversion coefficient for each supplier from the market capitalization of a representative manufacturer

of such a subsystem. For example, if Boeing is chosen as the customer and GE as the engine supplier,

we calculate the risk aversion ratio of r0/re ' 7 since GE’s market capitalization is roughly 7 times

that of Boeing (see justification for using company size as a proxy for risk aversion in Cummins [9]).

This approach is, of course, quite simplistic, but it fits our aim to illustrate the model. Using this

methodology we choose ra/r0 = 1.79, re/r0 = 0.15, rl/r0 = 11.76, rm/r0 = 1, and rw/r0 = 3.33 and

we select r0 = 0.15. The optimal contract terms and the suppliers’ actions are presented in Table 3.

We consider two scenarios: with small and high cost uncertainty (as captured by the coefficient of

variation ρi). For simplicity, assume that all suppliers have the same value of ρi. Table 3 summarizes

optimal contract parameters and the implied cost terms, including the cost and performance premiums.

In the case of high uncertainty, observe that the cost premium is higher than the performance premium

for all suppliers except for the engine supplier (e). This asymmetry arises because he is the only supplier

who is less risk averse than the customer. On the other hand, the performance premium becomes more

salient when cost uncertainty is small. We also observe that {αSBi } increases and {vSBi } decreases with
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ρi for all suppliers except (e), which is consistent with our results for a single supplier. Finally, the

values of {sSBi } are quite insensitive to changes in ρi as noted in the previous example.

7 Conclusion

The goal of this paper is to introduce contracting considerations into the management of after-sales ser-

vice supply chains. We do so by blending the classical problem of managing the inventory of repairable

service parts with a multitask principal-agent model. We use this model to analyze incentives provided

by three commonly used contracting arrangements, fixed-price, cost-plus and performance-based (FP,

C+ and PBL). By doing so, we analyze two practically important issues of contracting in service supply

chains — performance requirement allocation and risk sharing — when a single customer is contracting

with a collection of first-tier suppliers of the major subsystems used by an end product/system. When

performance is defined as overall system availability, the answer to the former can be found from the

solution of the classic service part resource allocation problem. Our innovation is in explicitly modeling

decentralized decision making and considering how firms behave when they face uncertainties arising

from both support costs and product performance. The notion of risk sharing found in the principal-

agent literature is incorporated into our model, providing insights into what types of contracts should

be used under various operating environments. Specifically, we have discovered that incentive terms

in the contract exhibit complementarity, i.e., incentives for both cost reduction and high availability

move in the same direction as cost uncertainty changes.

Furthermore, our analysis allows us to make normative predictions with respect to how contracts

are likely to evolve over the product life cycle. Given our assumption that supplier effort reduces

support costs but does not improve product performance reliability or repair capabilities, our model is

consistent with the observation that performance uncertainty is relatively stable throughout the repair

and maintenance process, while cost uncertainty is likely to be reduced over time by learning about

costs through the deployment of a larger fleet of systems. Thus, if a series of performance contracts

are signed over the product lifetime, our analysis indicates that the cost reimbursement ratio α will

decrease (increase) over time if the supplier is relatively more (less) risk-averse than the customer.

For the performance incentive v the direction is reversed. Since larger, more diversified customers are

more common in practice, our results predict that the optimal contract will typically assume less cost

sharing and more performance incentive as the product matures. Indeed, this prediction is confirmed by

practitioners and from the DoD publications: ”PBL strategies will generally have a phased contracting

approach, initiated by Cost Plus cost reimbursement type contracts to Cost Plus incentive contracts

to Fixed Price incentive contracts, over time” (Defense Acquisition University [12]).
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We find that, in the presence of great residual uncertainty associated with performance, cost sharing

is still an effective tool even if cost uncertainty is small. That is, the combination FP/performance-

based contract is not optimal in such instances (notice the gap between zero and αSB at Var[ε] = 0

in Figure 2), because the cost reimbursement α can be used as a risk protection mechanism even

for the risk borne by the performance. While inventory s can be used as an instrument to hedge

against performance risk, adjusting α is more effective for this purpose because the primary role of s

is controlling for the backorder level in order to achieve the availability target. Hence, some degree of

cost sharing is recommended in a performance contracting environment even when cost uncertainty is

low. Our numerical study shows that the optimal inventory position profile {sSBi } is quite insensitive

to changes in risk-related parameters such as r0, ri, and Var[εi]. This happens because the presence of

a stringent backorder constraint limits the range in which {sSBi } can be varied.

Performance-based contracting in service supply chains offers fertile ground for research where

economics and classical inventory theory converge naturally. Not only does it pose theoretically chal-

lenging questions, but insights gained from the analysis are of great interest to practitioners who are

currently undergoing major business process changes due to the move towards PBL contracting. Our

paper analyzes several major issues in performance contracting, but many open questions remain.

Follow-up studies may address such topics as the free-riding problem arising from overlapping down-

times across parts; gaming among suppliers and the consequences to realized performance; long-term,

strategic product reliability investment vs. intermediate-term, tactical inventory decisions; investment

in enhanced repair and logistics capabilities that would reduce lead times; alternative ownership and

management scenarios; and many more. We are currently working on some of these issues. Finally,

empirical verification of the insights gained from this paper will lead to more effective implementation

of contract design and aid contract negotiations.
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Appendix

Proof of Proposition 1. We first prove that at the equilibrium, all (IRi) constraints are binding,

i.e., wi − (1 − αi)(cisi − ai) − viE [Bi | si] − kia2i /2 − ri(1 − αi)
2Var[εi]/2 − riv2iVar[Bi | si]/2 = 0 for

all i. Suppose otherwise, i.e., that there exists j such that wj − (1 − αj)(cjsj − aj) − vjE [Bj | sj ] −

kja
2
j/2− rj(1− αj)

2Var[εj ]/2− rjv2jVar[Bj | sj ]/2 > 0. By reducing wj by ², the customer’s utility (5)

is increased by ² while the (AR) constraint is unaffected. This result allows us to transform (AFB) into

min
{αi,vi,ai,si}

Pn
i=1

¡
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
Var[εi]/2 + (r0 + ri) v

2
iVar[Bi | si]/2

¢
,

s.t.
Pn
i=1E [Bi | si] ≤ bB0 .

Clearly, the objective function is minimized when vi = 0 for all i. With this observation, the Lagrangian

with the associated multiplier θ becomes

L =
Pn
i=1

¡
cisi − ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
Var[εi]

¢
/2 + θ

³Pn
i=1E [Bi | si]− bB0´

= −θ bB0 +Pn
i=1

¡
cisi + θE [Bi | si]− ai + kia2i /2 +

¡
r0α

2
i + ri(1− αi)

2
¢
Var[εi]/2

¢
. (14)

It is apparent that the minimization can be done separately for each supplier. Let Li ≡ cisi +

θE [Bi | si] − ai + kia2i /2 +
¡
r0α

2
i + ri(1− αi)

2
¢
Var[εi]/2. As the objective is a decreasing function
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of {si} the optimal values are always at the corner and the (AR) constraint is binding, implying that

θ > 0. Note ∂2Li/∂a2i = ki > 0, ∂2Li/∂s2i = θf(si) > 0, and ∂2Li/∂α2i = r0 + r ≥ 0.In the absence of

cross partial terms ∂2Li/∂aisi = ∂2Li/∂siαi = ∂2Li/∂αiai = 0, so the Hessian for supplier i is posi-

tive definite and hence the problem is convex, establishing the uniqueness of the equilibrium solution.

(6), (7), and (9) are obtained from the first-order condition of supplier i. Clearly, the optimal si is a

function of θ, which is determined from the (AR) constraint, as in (8). The supplier’s profit and the

customer’s expenditures follow immediately.

Proof of Proposition 2. Note the following identities are needed:

dVar[Bi | si]/dsi = −2Fi(si)E[Bi | si] ≤ 0, (15)

d2Var[Bi | si]/ds2i = −2fi(si)E[Bi | si] + 2Fi(si)[1− Fi(si)]. (16)

Let us drop the subscript i for notational convenience. Differentiating the supplier’s expected utility

function (4) with respect to s and substituting (15), we find that

∂U/∂s = −(1− α)c+ v[1− F (s)] + rv2F (s)E[B | s], (17)

which is greater than zero for all s if α = 1 and v > 0, because U increases without bound in this case.

If α < 1 and v[1− F (0)] ≥ (1− α)c, then ∂U/∂s ≥ 0 at s = 0, so U is nondecreasing initially. Notice

also that lims→∞ ∂U/∂s = −(1− α)c < 0, so there exists at least one critical point on [0,∞). Setting

∂U/∂s = 0, we get E[B | s∗] = ((1− α)c− v[1− F (s∗)]) /
¡
rv2F (s∗)

¢
. Substituting this result into the

second derivative (use (16))

∂2U/∂s2 = −vf(s) + rv2f(s)E[B | s]− rv2F (s)[1− F (s)] (18)

we obtain

∂2U/∂s2
¯̄
s=s∗

= −[v − (1− α)c]f(s∗)/F (s∗)− rv2F (s∗)[1− F (s∗)] < 0,

where the inequality follows from the condition v ≥ v[1−F (0)] ≥ (1−α)c. Since the second derivative

is negative at every critical point, s∗ cannot be a minimizer. Combining this result with ∂U/∂s|s=0 > 0

and lims→∞ ∂U/∂s < 0, we conclude that U has a unique maximizer. Optimal solutions follow from

the first-order conditions.

Proof of Corollary 1. We drop the subscript i for notational convenience. After differentiating the

first-order condition (17) implicitly with respect to r (optimal s is a function of r, i.e., s∗ = s(r)) and
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collecting the terms we obtain

∂s∗

∂r
=

v2F (s∗)E[B | s∗]
vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] .

Notice that the denominator has the sign opposite of that in (18). Hence ∂s∗/∂r > 0. Similarly,

∂a∗/∂α = −1/k < 0, ∂a∗/∂v = 0,

∂s∗

∂α
=

c

vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] > 0,

∂s∗

∂v
=

[1− F (s∗)] + 2rvF (s∗)E[B | s∗]
vf(s∗)− rv2f(s∗)E[B | s∗] + rv2F (s∗)[1− F (s∗)] > 0.

Proof of Proposition 3. With r0 = r1 = ... = rn = 0, the customer’s Lagrangian for supplier

i becomes Li(ai, si, θ) = cisi + θE [Bi | si] − ai + kia2i /2 and solutions are given by (6), (7), and (8).

From the supplier’s utility Ui(ai, si, wi, vi,αi) = wi − (1 − αi)(cisi − ai) − viE [Bi | si] − kia2i /2 it is

clear that setting αi = 0 and vi = θ yields the same Lagrangian (with the reverse sign) as Li plus a

constant, reproducing the first-best solutions. The supplier’s profit and the customer’s expenditure

follow immediately.

Proof of Lemma 1. Define γ ≡ 4cF (s)E [B | s] /[1− F (s)]2 and note that (13) can be rewritten as

v(α) =
2c

1− F (s)
1

rγ

³
−1 +

p
1 + rγ(1− α)

´
,

from which we obtain

v0(α) = − c

1− F (s)
1p

1 + rγ(1− α)
, v00(α) = −1

2

c

1− F (s)
rγ

[1 + rγ(1− α)]3/2
.

Differentiating the Lagrangian (12) and substituting ∂(v2)/∂a = 2v(a)v0(a) and ∂2(v2)/∂a2 = 2(v0(a))2+

2v(a)v00(a) in it, we find that

∂L
∂α

=
α

k
+ [(r0 + r)α− r]Var[ε]−

2(r0 + r)c
2

[1− F (s)]2
1

rγ

Ã
1− 1p

1 + rγ(1− α)

!
Var[B | s],

∂2L
∂α2

=
1

k
+ (r0 + r)Var[ε] +

(r0 + r)c
2

[1− F (s)]2
1

[1 + rγ(1− α)]3/2
Var[B | s] > 0.
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Proof of Proposition 5. We use the results in the proof of Lemma 1. Define

è
FB(α) ≡ [(r0 + r)α− r]Var[ε],è
SO(α) ≡

α

k
+ [(r0 + r)α− r]Var[ε],

è
AO(α) ≡ [(r0 + r)α− r]Var[ε]−

2(r0 + r)c
2

[1− F (s)]2
1

rγ

³
1− (1 + rγ(1− α))−1/2

´
Var[B | s],

è
SB(α) ≡

∂L
∂α
(α) =

α

k
+ [(r0 + r)α− r]Var[ε]−

2(r0 + r)c
2

[1− F (s)]2
1

rγ

³
1− (1 + rγ(1− α))−1/2

´
Var[B | s].

αFB, αSO, αAO, and αSB are the solutions to èFB(α) = 0, èSO(α) = 0, èAO(α) = 0, and èSB(α) = 0,
respectively. Observe èAO(α) ≤ èSB(α) ≤ èSO(α) for any α. Since è0j(α) > 0 for all j, αSO ≤ αSB ≤

αAO. In contrast, both èFB(α) ≤ èSB(α) and èFB(α) ≥ èSB(α) are possible. To see this, substitute

αFB = r/(r0 + r) in èSB to obtain
è
SB(α

FB) =
1

k

r

r0 + r
− 2(r0 + r)c

2

[1− F (s)]2
1

rγ

"
1−

µ
1 +

r0rγ

r0 + r

¶−1/2#
Var[B | s].

Let δ ≡ r/r0 and rewrite èSB(αFB) as a function of δ:
`SB(δ) ≡ èSB(αFB) = 1

k

δ

1 + δ
− 2c2

[1− F (s)]2
1

rγ

µ
1 +

1

δ

¶"
1−

µ
1 +

rγ

1 + δ

¶−1/2#
Var[B | s].

Differentiating, we see that

`0SB(δ) =
1

k(1 + δ)2
+
2c2Var[B | s]
[1− F (s)]2rγ

"
1

δ2

Ã
1−

µ
1 +

rγ

1 + δ

¶−1/2!
+
(1 + 1/δ) rγ

2(1 + δ)2

µ
1 +

rγ

1 + δ

¶−3/2#
> 0.

Hence, `SB(δ) is increasing. Notice limδ→0 `SB(δ) = −∞, limδ→∞ `SB(δ) = 1/k. Therefore there is a

unique δ† such that `SB(δ
†) = 0. Since `SB(δ) is increasing, `SB(δ) = è

SB(α
FB) > 0 for all δ > δ†,

implying that αSB < αFB, since èSB(α) is also increasing. Likewise, αSB > αFB for all δ < δ†.

Differentiating èSB(αSB) = 0 with respect to Var[ε] and collecting terms, we see that
dαSB

d(V ar[ε])
=

r − (r0 + r)αSB
1
k + (r0 + r)Var[ε] +

(r0+r)c2

[1−F (s)]2
1
rγ

1
[1+rγ(1−αSB)]3/2Var[B | s]

.

The numerator is negative if αSB > αFB, zero if αSB = αFB, and positive if αSB < αFB. The sign of

dvSB/d(Var[ε]) is the reverse of that of dαSB/d(Var[ε]) via (13).
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r0 = 0.01 r0 = 0.1 r0 = 1
r2 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

αFB2 0.500 0.909 0.990 0.091 0.500 0.909 0.010 0.091 0.500

αSB1 0.279 0.279 0.279 0.318 0.318 0.318 0.430 0.430 0.429

αSB2 0.060 0.279 0.755 0.184 0.318 0.726 0.436 0.430 0.539

vSB1 0.994 0.993 0.987 0.952 0.944 0.934 0.823 0.801 0.758

vSB2 1.408 0.993 0.288 1.215 0.944 0.317 0.826 0.801 0.490

aSB1 3.603 3.603 3.603 3.409 3.409 3.409 2.849 2.852 2.856

aSB2 4.699 3.603 1.224 4.082 3.409 1.371 2.820 2.852 2.303

sSB1 8.729 8.725 8.678 8.779 8.725 8.650 8.905 8.725 8.330

sSB2 8.722 8.725 8.773 8.672 8.725 8.802 8.559 8.725 9.151

−U0 13.342 13.923 15.153 14.000 14.435 15.676 19.104 19.153 20.141

Table 4: Effects of changing r2. Italics indicate symmetric parameters.

r0 = 0.01 r0 = 0.1 r0 = 1
(αFB2 = 0.909) (αFB2 = 0.5) (αFB2 = 0.091)

Var[ε2] 1 10 100 1 10 100 1 10 100

αSB1 0.279 0.279 0.279 0.318 0.318 0.318 0.429 0.430 0.430

αSB2 0.172 0.279 0.650 0.268 0.318 0.442 0.654 0.430 0.156

vSB1 0.993 0.993 0.992 0.944 0.944 0.944 0.794 0.801 0.800

vSB2 1.127 0.993 0.507 1.007 0.944 0.785 0.505 0.801 1.149

aSB1 3.603 3.603 3.603 3.409 3.409 3.409 2.853 2.852 2.852

aSB2 4.138 3.603 1.752 3.658 3.409 2.790 1.731 2.852 4.221

sSB1 8.724 8.725 8.718 8.725 8.725 8.723 8.670 8.725 8.715

sSB2 8.727 8.725 8.733 8.726 8.725 8.728 8.782 8.725 8.735

−U0 13.653 13.923 15.139 14.172 14.435 16.780 17.794 19.153 24.341

Table 5: Effects of changing V ar[ε2] when r1 = r2 = 0.1. Italics indicate symmetric parameters.

bB0 1 2 3 4 5 6 7

αSB1 0.421 0.404 0.398 0.396 0.396 0.397 0.399

αSB2 0.592 0.604 0.614 0.624 0.634 0.644 0.653

vSB1 1.678 1.147 0.935 0.820 0.748 0.699 0.666

vSB2 0.792 0.557 0.463 0.412 0.379 0.357 0.341

aSB1 2.896 2.980 3.011 3.021 3.021 3.015 3.006

aSB2 2.039 1.981 1.929 1.879 1.830 1.782 1.737

sSB1 11.852 10.384 9.355 8.511 7.765 7.078 6.425

sSB2 12.205 10.752 9.751 8.948 8.259 7.644 7.083

(sSB2 − sSB1 )/sFB1 2.94% 3.48% 4.15% 5.00% 6.17% 7.69% 9.75%

IIR1 11.852 10.384 9.355 8.511 7.765 7.078 6.425

IIR2 12.205 10.752 9.751 8.948 8.259 7.644 7.083

NCR1 2.057 2.092 2.104 2.108 2.108 2.106 2.102

NCR2 1.623 1.589 1.557 1.526 1.495 1.465 1.435

CRP1 0.610 0.586 0.577 0.574 0.574 0.576 0.578

CRP2 1.708 1.696 1.687 1.680 1.675 1.671 1.668

PRP1 1.252 1.160 1.116 1.090 1.074 1.062 1.055

PRP2 0.574 0.587 0.600 0.611 0.621 0.628 0.632

−U0 24.521 21.484 19.425 17.781 16.364 15.088 13.905

Table 6: Effects of changing B̂0, with r0 = 0.5, r1 = 0.1 and r2 = 1. IIR stands for investment in resources and is equal
to cis

SB
i . NCR is −aSBi + 1

2ki(a
SB
i )2, the net cost reduction. CRP is the residual cost risk premium, 12 (r0(α

SB
i )2+ ri(1−

αSBi )2)V ar[εi], and PRP is the residual performance risk premium,
1
2
(r0 + ri)(v

SB
i )2V ar[Bi|sSBi ].
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