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New Product Diffusion with Influentials and Imitators 
 

Abstract 
 

We model the diffusion of innovations in markets with two segments: influentials who are more 

in touch with new developments and who affect another segment of imitators whose own 

adoptions do not affect the influentials. This two-segment structure with asymmetric influence is 

consistent with several theories in sociology and diffusion research as well as many “viral” or 

“network” marketing strategies. We have four main results. (1) Diffusion in a mixture of 

influentials and imitators can exhibit a dip or “chasm” between the early and later parts of the 

diffusion curve. (2) The proportion of adoptions stemming from influentials need not decrease 

monotonically but may first decrease and then increase. (3) Erroneously specifying a mixed-

influence model to a mixture process where influentials act independently from each other can 

generate systematic changes in the parameter values reported in earlier research. (4) Empirical 

analysis of 33 different data series indicates that the two-segment model fits better than the 

standard mixed-influence, the Gamma/Shifted Gompertz, and the Weibull-Gamma models, 

especially in cases where a two-segment structure is likely to exist. Also, the two-segment model 

fits about as well as the Karmeshu-Goswami mixed-influence model in which the coefficients of 

innovation and imitation vary across potential adopters in a continuous fashion. 

 

Key words: Diffusion of innovations; social contagion; social structure; asymmetric influence. 
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1. Introduction 

Under pressure to increase their marketing ROI through more astute targeting of resources, 

marketers are rediscovering the importance of social contagion. Recent “viral” and “network” 

marketing strategies often share two key assumptions: (1) some customers are more in touch 

with new developments than others, and (2) some (often, the same) customers’ adoptions and 

opinions have a disproportionate influence on others’ adoptions (e.g., Gladwell 2000; Moore 

1995; Rosen 2000; Slywotzky and Shapiro 1993). Targeting those influential prospects who are 

more in touch with new developments and converting them into customers, the logic goes, 

allows marketers to benefit from a social multiplier effect on their marketing efforts. The two 

assumptions are quite reasonable, as they are consistent with several theories and a large body of 

empirical research (e.g., Katz and Lazarsfeld 1955; Rogers 2003; Weimann 1994), and the social 

multiplier logic cannot be faulted either (e.g., Case et al. 1993; Valente et al. 2003). Yet, 

marketing science provides little or no additional theoretical or descriptive insight into how new 

products diffuse in such markets. The reason is that the great majority of marketing diffusion 

models assume homogeneity rather than heterogeneity in the tendency to be in tune with new 

developments and the tendency to influence (or be influenced by) others. We address this gap 

between theory and emerging practice on the one hand, and marketing diffusion models on the 

other. Specifically, we model the aggregate-level diffusion path of a new product when the set of 

ultimate adopters is not homogenous but consists of two segments: influentials who are more in 

touch with new developments and who affect another segment of imitators whose own adoptions 

do not affect the influentials. We allow for the presence or absence of contagion among 

influentials and among imitators. 
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Many diffusion models incorporate the dual drivers of independent decision making affected 

by being in touch with new developments and of imitation driven by others’ prior adoptions, but 

they do so under the assumption that all potential adopters are ex ante affected equally by both 

factors. Taga and Isii (1959) in statistics, Mansfield (1961), Pyatt (1964) and Williams (1972) in 

economics, Coleman (1964) in sociology, and Bass (1969) and Massy, Montgomery and 

Morrison (1970) in marketing, all advanced a model specifying the rate at which actors who have 

not adopted yet do so at time t as h(t) = p + qF(t), where F(t) is the proportion of ultimate 

adopters that has already adopted, parameter q captures social contagion, and parameter p 

captures the time-invariant tendency to adopt early affected by consumer characteristics, the 

innovation’s appeal, and efforts of change agents.1 Since the proportion that adopts at time t can 

be written as f(t) = dF(t)/dt = h(t) [ 1 – F(t) ], one obtains: 

 f(t)   =   dF(t)/dt   =   [ p + qF(t) ] [ 1 – F(t) ] [1] 

The solution of this differential equation can be written as:  

 F(t)   =   [1 - e-g-(p+q)t] / [1 + (q/p) e-g-(p+q)t] [2] 

where g acts as a location parameter fixing the curve on the time axis (e.g., Mansfield 1961). 

When t = 0 corresponds to the actual launch time such that F(0) = 0, then g = 0 and equation (2) 

reduces to the solution popular in marketing. 

The rate is influenced by both the intrinsic tendency to adopt (p) and social contagion (q) at 

all times except at t = 0 when qF(0) = 0. To reflect this dual influence, Mahajan and Peterson 

(1985) refer to the model as the mixed-influence model. Because the rate contains no contagion 

pressure at t = 0, those adopting at that time are sometimes referred to as innovators and 

contrasted against all others adopting later who are called imitators (e.g., Bass 1969). However, 

                                                 
1Following the convention in marketing, we refer to the rate at which non-adopters turn into adopters as the hazard 
rate and denote it as h(t), even though the models we discuss are deterministic rather than probabilistic. 
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this terminology can be used only ex post and the model does not represent a diffusion process in 

an ex ante mixture of two segments, the first adopting independently at rate p and the second 

adopting because of social contagion at rate qF(t) (Bemmaor 1994; Jeuland 1981; Lekvall and 

Wahlbin 1973; Manfredi et al. 1998; Steffens and Murthy 1992; Tanny and Derzko 1988).  

The objective of this study is to mathematically formalize prior theoretical arguments and 

research findings on social structure and diffusion, and to use this formalization to generate more 

refined theoretical insights on new product diffusion in a population of influentials and imitators. 

This is important as marketing practitioners increasingly deploy strategies assuming such a 

market structure and as marketing researchers increasingly incorporate social structure into their 

diffusion investigations (e.g., Bronnenberg and Mela 2004; Frenzen and Nakamoto 1993; Garber 

et al. 2004; Godes and Mayzlin 2004; Putsis et al. 1997; Van den Bulte and Lilien 2001). 

Our results offer formalized insights into some current substantive and methodological 

research questions. First, diffusion in a mixture of influentials and imitators can exhibit a dip 

between the early and later parts of the diffusion curve. In contrast to what Moore (1991) claims, 

our model shows that it need not always be necessary for firms to change their product to gain 

traction among later adopters and the adoption curve to swing up again.2 Like Steffens and 

Murthy (1992) and Karmeshu and Goswami (2001) but unlike Goldenberg et al. (2002), we 

obtain this result from a closed-form solution, and unlike those prior analyses, we show that a dip 

can occur even when influentials act independently from each other. Second, the proportion of 

adoptions stemming from influentials need not decrease monotonically but may first decrease 

and then increase. The management implication is that, while it may make sense to shift the 

focus of one’s marketing efforts from influentials to imitators shortly after launch as shown by 

                                                 
2 Changing the product might consist of augmenting the core product with complementary services and products to 
provide a ‘whole product,’ or consist of offering simpler and more user-friendly versions of the core product. 
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Mahajan and Muller (1998) using a two-period model, one may want to revert one’s focus back 

to influentials later in the process. Third, erroneously specifying a mixed-influence model to a 

two-segment process can generate the systematic changes in the parameter values over time 

reported in several studies (e.g., Van den Bulte and Lilien 1997; Venkatesan et al. 2004). This 

analytical result is a specific formalization of Van den Bulte and Lilien’s (1997) more general 

but qualitative argument that unaccounted heterogeneity in p or q can generate changes in these 

parameters’ estimates as one extends the data window. Our result also complements Bemmaor 

and Lee’s (2002) simulation analysis since we consider heterogeneity in a process with genuine 

contagion rather than in a Gamma/Shifted Gompertz process without contagion.  

We also perform an empirical analysis and assess the descriptive performance of the two-

segment model compared to that of the mixed-influence model and of three diffusion models 

incorporating heterogeneity in the form of a continuous rather than a discrete mixture. Given the 

difficulty of unambiguously identifying causal processes from aggregate diffusion data 

(Bemmaor 1994; Hernes 1976; Lekvall and Wahlbin 1973; Lilien et al. 1981; Van den Bulte and 

Stremersch 2004), the objective of this empirical analysis is not to conclusively demonstrate the 

validity of any model. Rather, it is to assess whether the differences between the discrete mixture 

and other models are sufficiently important to lead to differences in descriptive performance 

when applied to data of interest to marketing researchers. The two-segment model fits better than 

the mixed-influence, Gamma/Shifted Gompertz (Bemmaor 1994), and Weibull-Gamma models 

(Hardie et al. 1998; Massy et al. 1970; Narayanan 1992), especially in cases where a two-

segment structure is likely (or even known) to exist, and fits about as well as a recently advanced 

mixed-influence model where p and q vary across potential adopters in a continuous fashion 

(Karmeshu and Goswami 2001). 
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We proceed by first outlining our model setting, and within that context, discuss five theories 

and frameworks that suggest the existence of ex ante influentials and imitators. Next, we develop 

a macro-level model of innovation diffusion in such a setting. Subsequently, we discuss how this 

model relates to the familiar mixed-influence model and to prior work on two-segment models. 

Finally, we report on the descriptive performance of the influential-imitator model compared to 

that of the mixed-influence and continuous-mixture models. 

 
2. Theories motivating a two-segment structure of influentials and imitators 

The situation we model is the following. The set of eventual adopters has a constant size M 

and consists of two a priori different types of actors, influentials and imitators. We use the 

subscripts 1 and 2 to denote each type, and the subscript m to denote the entire mixture 

population of adopters. We use θ to denote the proportion of type 1 actors in the population of 

eventual adopters (0 ≤ θ ≤ 1), and F(t) to denote the cumulative penetration. Finally, w denotes 

the relative importance that imitators attach to influentials’ versus other imitators’ behavior (0 ≤ 

w ≤ 1). Each type’s adoption behavior is then captured by the following hazard functions: 

 h1(t) = p1 + q1F1(t)  [3] 

 h2(t) = p2 + q2[wF1(t) + (1-w)F2(t)]  [4] 

Note the asymmetry in the influence process: type 1 may influence type 2, but the reverse is not 

true. Since, ex ante, anyone of type 1 may influence anyone of type 2, we label the former 

influentials and the latter imitators. When p2 = 0, contagion from influentials to imitators (wq2 > 

0) is critical for the diffusion process among the latter to get started. Obviously, when θ = 1 or θ 

= 0, everyone falls into a single segment and the situation reduces to the mixed-influence model 

(MIM). When 0 < θ < 1 but w = 0, the model reduces to two disconnected MIMs and, with 

further restrictions, to a model with two disconnected logistic or exponential functions (e.g., Moe 
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and Fader 2001; Perrin 1994). Also, when imitators put equal weight on all prior adoptions 

regardless of origin, then we have h2(t) = p2 + q2Fm(t), which implies w = θ (see Section 3). 

The distinction between influentials and imitators is based on what drives their adoption 

behavior, not on whether they adopt early or late. Hence, the distinction is different from that of 

innovators vs. imitators in Bass (1969) and innovators vs. early adopters vs. early majority vs. 

late majority vs. laggards in Rogers (2003). Conceptually, causal drivers and time of adoption 

need not map one-to-one. Empirically, while those adopting early may act independently of 

others, and those adopting late may be subject to contagion, this is not always so: many early 

adoptions may be driven by contagion and the bulk of the late adoptions may stem from people 

not subject to social contagion (e.g., Becker 1970; Coleman et al. 1966). 

Several theories and conceptual models suggest such a two-segment structure, though there is 

some disagreement on whether q1 and p2 may be larger than zero. We first describe sociological 

arguments focusing on social character, social status, and social norms. Then, we turn to the two-

step flow hypothesis that focuses on interest in new developments, and finally to the chasm idea 

that focuses on enthusiasm for innovations versus risk aversion. 

2.1. Social character 

In his classic treatise on the changing nature of modern society, Riesman (1950) 

distinguished three types of social character: autonomous, inner-directed, and other-directed. The 

first two have in common the presence of clear-cut internalized goals, but differ as to whether 

these are consciously chosen (autonomous) or inculcated during youth by elders (inner-directed). 

Other-directed actors, in contrast, use their peers as their source of direction. The typology is in 

essence about conformity stemming from the need for approval and direction from others. 

Riesman worked on a broad social and cultural canvas and his typology is best used to refer to 
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patterns of behavior found in a variety of specific contexts rather than to types of persons or 

personalities. Yet, his concepts have direct relevance for consumer behavior (e.g., Riesman 

1950; Schor 1998). Some actors in some situations will exhibit autonomous or inner-directed 

adoption behavior independent from their peers (hence q1 = 0), while others will exhibit other-

directed behavior driven by social contagion from peers. Riesman did not narrowly specify who 

these peers are, and allowed them to be all of society (so w = θ being possible).  

2.2. Status competition and maintenance 

People buy and use products not only for functional purposes but also to construct a social 

identity, and to confirm the existence and support the reproduction of social status differences 

(Bourdieu 1984). A long-held idea in diffusion theory is that people seek to emulate the 

consumption behavior of their superiors and aspiration groups (e.g., Simmel 1971) and also 

quickly pick up innovations adopted by others of similar status if they fear that such adoptions 

might undo the present status ordering (Burt 1987). In short, actors tend to imitate the adoptions 

of those of higher and similar social status. 

Assuming one can divide the population in a high-status and a low-status group, status 

considerations suggest that both groups may exhibit contagion. Higher-status actors may imitate 

each other out of fear of falling behind (q1 ≥ 0), and lower-status actors imitate to catch up. 

Whose adoptions the imitators act upon is not clear a priori. If they care only about adoptions by 

the high-status influentials, then w → 1. However, most authors follow Simmel and posit a finer-

grained hierarchy with multiple strata (approximated imperfectly by a dichotomy) and a 

cascading pattern where all prior adoptions contribute equally to social contagion (w = θ). 

Finally, to the extent that status is maintained by adhering to social norms enforced among one’s 

direct peers of similar position, imitators should care mostly about fellow imitators (w → 0). 
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2.3. Middle-status conformity 

Like theories of status competition and maintenance, middle-status conformity theory is 

about one’s proper place in society. The main claim is that the relationship between status and 

conformity to norms—and hence susceptibility to social contagion—is an inverted U (e.g., 

Homans 1961; Philips and Zuckerman 2001). Since high-status actors feel confident in their 

social acceptance, they feel comfortable to deviate from conventional behavior and adopt 

appealing innovations independently from others. Low-status actors feel free to deviate from 

accepted practice and adopt innovations independently as well because they feel that this can not 

hurt their already low status. Middle-status actors, in contrast, feel insecure and strive to 

demonstrate their legitimacy by engaging in new practices only after they have been socially 

validated. So, middle-status conformity theory is consistent with the presence of two kinds of 

actors, one adopting as a function of the innovation’s appeal irrespective of others’ actions (q1 = 

0), and one adopting as a function of the legitimation stemming from prior adoptions. 

The theory does not specify whose adoptions are being imitated (w). Adoptions by high-

status actors might legitimate the innovation in the eyes of the middle-status actors 

disproportionately, in which case the relation of w to θ is unclear as the latter captures both high 

and low status. Conversely, imitators may care only about social acceptability among their 

middle-status peers, and hence care only about the latter’s adoptions (w = 0). Finally, 

applications of neo-institutional theory to innovation adoption tend to posit that the legitimacy of 

an innovation is affected by the overall penetration rate (w = θ). 

Note, higher status is often associated with higher economic resources and hence a higher 

ability to adopt innovations. This leads to the interesting prediction that only the adoptions at an 

intermediate stage of the overall diffusion process (made by middle-status actors) exhibit 
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contagion (e.g., Cancian 1979), because the earliest adoptions will come from high-status actors 

and the latest from low-status actors, none of which are subject to contagion. 

2.4. Two-step flow 

The two-step flow hypothesis, originally proposed to explain unexpectedly weak mass media 

effects in presidential elections, posits that “ideas often flow from radio and print to the opinion 

leaders and from them to the less active sections of the population” (Lazarsfeld et al. 1944, p. 

151; emphasis in original). So, in its original and starkest version, the two-step flow hypothesis 

posits two groups, one being affected only by mass media (q1 = 0) and the other being affected 

only by social contagion (p2 = 0). What distinguishes the two groups is the level of interest in the 

subject matter and alertness to new developments rather than exposure to mass communications 

(Lazarsfeld et al. 1944). Later studies in marketing have corroborated a strong relationship 

between opinion leadership and product interest and involvement (e.g., Coulter et al. 2002; 

Myers and Robertson 1972). Note, the two-step flow hypothesis does not impose that an opinion 

leader in one sphere (politics, fashion, computer games, etc.) also be a leader in another sphere, 

and several studies indeed document only moderate to little overlap in leadership across product 

categories (e.g., Katz and Lazarsfeld 1955; Merton 1949; Myers and Robertson 1972; Silk 1966). 

So, the relative size of the segments (θ) may vary across innovations. While early studies 

focused on information flows from opinion leaders to less active members of the population, 

subsequent research has documented extensive information exchange among opinion leaders and 

(e.g., Coulter et al. 2002; Katz and Lazarsfeld 1955) consistent with q1 > 0. 

The two-step flow hypothesis emphasizes the flow of information. The contagion mechanism 

is one of information transfer increasing awareness of the product’s existence and decreasing its 

perceived risk, not of normative legitimation or status competition. Of the five theories we 
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consider, this is perhaps the most flexible. For low-risk innovations, for instance, the fraction of 

imitators in need of guidance can be quite small, and θ quite large. Who is being imitated is not 

clearly specified, and w may range from 0 to 1. The original two-step flow idea emphasizes that 

mass media influence on the less-active segment operates through opinion leaders who are the 

only ones to take an active interest in information available in the media. It does so without 

constraining the social influence exerted on the less-active segment to come only from opinion 

leaders, and allows for a cascading or rolling pattern through the population where all prior 

adoptions contribute to social contagion (e.g., Katz 1957; Merton 1949). This suggests w ≈ θ. 

However, it is quite possible that opinion leaders are more influential, suggesting that—in the 

extreme case—they may be the only ones being imitated (w = 1). Conversely, it is also quite 

possible that imitators consider fellow imitators to be more representative and hence valuable as 

information sources, suggesting low values of w. 

2.5. High-technology adoption chasm 

In Moore’s (1991) chasm framework for technology products, the so-called early market 

consists of “technology enthusiasts” and “visionaries” who are quick to appreciate the nature and 

benefits of the innovation, whereas the “mainstream” market consists of more risk-averse 

decision makers and firms who fear being stuck with a technology that is not user friendly, 

poorly supported, or at risk of losing a standards war. Whereas the mainstream market can be 

represented as responding only to the size of the installed base, i.e., prior adoptions (Mahajan 

and Muller 1998), Moore is unclear about the process among “technology enthusiasts” and 

“visionaries”. Whereas his textual discussions suggest that they act independently (q1 = 0), his 

stylized graph of the bell-shaped adoption curve with a chasm is mathematically inconsistent 
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with a constant-hazard process in the early stages of diffusion and requires q1 > 0. Note, for the 

chasm to be truly problematic, p2 → 0 is required. 

Moore does not clearly specify whose adoptions are being imitated (w). On the one hand, one 

might argue that the legitimacy of a new technology is affected by the penetration rate in the 

overall population, i.e., the total installed base regardless of who adopted (w = θ). On the other 

hand, Moore emphasizes that product and service offerings appealing to technology enthusiasts 

and visionaries need not appeal to the mainstream market, which implies that mainstream 

customers discount adoptions by technology enthusiasts and visionaries and care only about 

adoptions by other mainstream customers (w = 0).3 

2.6. Conclusion 

At least five different theoretical frameworks imply modeling innovation diffusion using a 

two-segment structure consisting of influentials and imitators (Table 1). Two theories suggest 

that influentials adopt independently, implying q1 = 0, but the other three suggest that influentials 

may exhibit contagion amongst themselves.4 While one might intuitively expect p1 > p2 and none 

of the theories rules this out, this inequality is implied only by adherents of the chasm 

framework. Also, several studies have documented that the majority of earliest adopters need not 

always be opinion leaders with disproportionate influence (Weimann 1994), implying θp1 < (1-

θ)p2 and leaving p1 < p2 as a possibility. Similarly, while one might intuitively expect q1 < q2 and 

none of the theories rules this out, this inequality is required only by the two theories implying q1 
                                                 
3 Moore himself is far from clear on the issue when discussing the relationship between “visionaries” in the early 
market and “pragmatists,” i.e., the early adopters among the members of the mainstream market. At one point, he 
admonishes the reader to “do whatever it takes to make [visionaries] satisfied customers so that they can serve as 
good references for the pragmatists” but on the very next page he writes that “pragmatists think visionaries are 
dangerous. As a result, visionaries, with their highly innovative … projects do not make good references for 
pragmatists” (Moore 1995, pp. 18-19). 
4 Independent decision making among influentials is also consistent with Midgley and Dowling (1978) who define 
innovativeness as “the degree to which an individual makes innovation decisions independently of the 
communicated experience of others” (p. 235). So our distinction between independent influentials (with q1 = 0) and 
pure imitators with p2 = 0 is the same as their dichotomy between “innate innovators” and “innate noninnovators”. 
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= 0 and q2 > 0 and several studies have documented that opinion leaders with disproportionate 

influence may also greatly influence one another (e.g., Weimann 1994). All theories allow for 

the initial impetus among imitators to stem from influentials, and so allow for p2 = 0. 

 
Table 1: Theoretical frameworks suggesting an influential-imitator mixture 

Framework Influentials Imitators Reason to imitate Who gets imitated a 
Social character Autonomous and 

inner-directed;    
q1 = 0 

Other-directed Looking for approval 
and direction 

- Not specified, possibly all 
adopters (w = θ) 

Status competition 
and maintenance 

High status; q1 ≥ 0 Low status Gaining or  
maintaining status 

- All adopters (w = θ) 
- Only influentials (w = 1) 
- Only imitators (w = 0) 

Middle-status 
conformity 

High and low 
status; q1 = 0 

Middle status Conforming to social 
norms 

- All adopters (w = θ) 
- Only influentials with high 
status 
- Only imitators (w = 0)  

Two-step flow Active and 
involved (opinion 
leaders); q1 ≥ 0 

Not active or 
involved 

Transferring 
information 

- All adopters (w = θ) 
- Only influentials (w = 1) 
- Only imitators (w = 0 

Technology chasm Technology 
enthusiasts and 
visionaries; q1 ≥ 0 

Mainstream 
customers 

Reducing risk - All adopters (w = θ) 
- Only imitators (w = 0) 

a Parameter w denotes how much the social contagion affecting the imitators stems from the influentials (w) rather 
than fellow imitators (1-w). Parameter θ is the fraction of ultimate adopters belonging to segment 1 (influentials). 

 
The theories vary in their causal mechanisms and, consequently, in what kind of actors 

belongs to each segment and who the imitators imitate (w). The theories also suggest that the 

relative size of the segments (θ) can vary from innovation to innovation. It may be quite low for 

very non-mainstream products that only a very small pocket of “bleeding edge” customers find 

attractive but that in spite of the latter’s enthusiasm take a long time to diffuse, resulting in an 

adoption curve with a long left tail. Conversely, for products with low functional or financial risk 

and with little implications for social status, like marginally novel drugs or CDs and movies with 

already famous performers, most adopters may feel little need for information or legitimation 

from peers. This implies a high θ, a low q1, and an exponential-like diffusion process (e.g., Moe 

and Fader 2001; Van den Bulte and Lilien 2001). 
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3. Two-segment mixture models 

We seek closed-form solutions in the time domain for an innovation’s diffusion path when 

the set of eventual adopters, which has a constant size M, consists of two a priori different types 

of actors adopting according to equations (3) and (4). The overall cumulative penetration is 

simply the average of both types’ cumulative penetration weighted by their constant population 

weights (e.g., Cox 1959): 

 Fm(t)   =   θ F1(t)  +  (1−θ) F2(t) [5] 
 
Similarly, the fraction of the population adopting at time t is: 

 fm(t)   =   θ f1(t)  +  (1−θ) f2(t) [6] 
 
In contrast, the population hazard function is not an average of the two hazards weighted by each 

segment’s constant population weights, but is given by: 

 hm(t) = fm(t)  /  [1−Fm(t)] 

  = [ θ f1(t) + (1−θ) f2(t) ] / [1−Fm(t)] 

  = π(t) h1(t)  +  [1−π(t)] h2(t) [7] 

where fi(t) = hi(t) [1−Fi(t)] and π(t) is the proportion of actors not having adopted yet at time t 

that belong to type 1: 

 π(t) = θ  
)(1
)(1 1

tF
tF

m−
−  [8] 

Finally, the proportion of adoptions taking place at time t that is made by actors of type 1 is: 

 φ(t) = θ f1(t)  /  fm(t) [9] 

3.1. Asymmetric influence model (AIM) with q1 > 0 

Having defined the key functions, and having made the behavioral assumptions in the hazard 

functions (eqs. 3 and 4), we now develop the asymmetric influence mixture model (AIM). The 
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process among the influentials is the well-known mixed-influence model. When F1(0) = 0, the 

cumulative penetration function and instantaneous adoption function for influentials are: 
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The diffusion path among imitators, in contrast, does not follow any standard diffusion model, as 

it is driven by the prior adoptions of both influentials and other imitators. As shown in Appendix 

A1, when F2(0) = 0, the cumulative penetration function for imitators in the AIM is: 
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Gaussian hypergeometric function: 
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This hypergeometric series is convergent for arbitrary b, c if |k| < 1; and for k = ±1 if c > 1 + b. 

This implies that the closed-form solution in equation (12) is well-defined as long as q1 > 0.5 

Once F1(t) and F2(t) are known, one can obtain the instantaneous adoption function f2(t) by 

substituting equations (10) and (12) into: 

 f2(t) = q2 [wF1(t) + (1-w) F2(t)] [1- F2(t)] [14] 

With solutions for F1(t), f1(t), F2(t) and f2(t) available, one can enter those into equations (5) 

through (9) to obtain closed-form solutions for the population-level functions.6  

                                                 
5 While the Gaussian hypergeometric functions 2F1(1,b;c;k) can be simplified to incomplete beta functions, we do 
not perform this simplification as it requires the overly restrictive condition that p1w > q1(1-w+p2/ q2). 
6 Even though our closed-form solution for F2(t) in the AIM looks quite different from the solution presented by 
Steffens and Murthy (1992), theirs is actually nested in ours. After imposing the constraints p2 = 0 and w = θ, 
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In Figure 1, we plot the function fm(t) and its two components θf1(t) and (1-θ)f2(t) for four 

sets of parameter values chosen to illustrate various types of diffusion behavior possible in this 

model when p2 = 0 and interconnection between segments is crucial: 

Case (a): p1 = 0.05; q1 = 0.1; q2 = 0.2; θ = 0.15; w = 0.20;  

Case (b): p1 = 0.01; q1 = 0.5; q2 = 0.2; θ = 0.15; w = 0.01; 

Case (c): p1 = 0.05; q1 = 0.5; q2 = 0.2; θ = 0.30; w = 0.30; 

Case (d): p1 = 0.01; q1 = 0.1; q2 = 0.2; θ = 0.15; w = 0.001. 

Diffusion process (a) exhibits a bell-shaped adoption curve fm(t) that is unimodal and close to 

symmetric around its peak. This is the pattern commonly associated with the mixed-influence 

model. Diffusion process (b) is bimodal and exhibits a marked dip because adoptions by 

influentials are already well past their peak by the time the imitators start adopting in numbers 

(the delay being caused by the low w value). This is the much-debated “chasm” pattern. 

Diffusion processes (c) and (d), finally, are again unimodal but exhibit a clear skew to the right 

or left, which the mixed-influence cannot account for very well (e.g., Bemmaor and Lee 2002).7 

Note that in all four cases, f1(t) reaches zero before f2(t) does, so the commonly expected 

association between being an imitator and being a late adopter holds. Also note that, as one 

would intuit, low values of w cause the diffusion among imitators to be delayed and f2(t) to shift 

to the right. We now turn to the case where q1 = 0, and study it in some more detail using the 

                                                                                                                                                             
reparameterizing the Steffens-Murthy solution in terms of m, θ, p1, q1, and q2, correcting for a (most likely 
typographic) error in their solution, and performing additional derivations, one can show that our closed-form 
solution for F2(t) in the AIM, and hence Fm(t), is identical to theirs. One difference, though, is that their solution 
requires q1 > q2θ (or q1 > q2w) for a series expansion term in their solution to converge, whereas the solution in eq. 
(12) only requires q1 > 0. 
7 All four patterns for the total number of adoptions shown in Figure 1 have been documented in prior research. 
Pattern (a) is probably the most commonly reported in the marketing literature. Steffens and Murthy (1992) and 
Karmeshu and Goswami (2001) report data series exhibiting the bimodal pattern (b). Dixon (1980) reports the 
presence of long right tails, i.e., pattern (c), in many of the data he analyzed. Van den Bulte and Lilien (1997) report 
several data series exhibiting long left tails, i.e., pattern (d). 
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functions hm(t), π(t), and φ(t). 

 
Figure 1: Adoption functions for four IIM diffusion processes 

 

 
3.2. Asymmetric influence model (AIM) with q1 = 0 and pure-type mixture model (PTM) 

When influentials adopt independently and q1 = 0, the process among the independents is the 

well known constant-hazard exponential process. When F1(0) = 0, we have: 

 F1(t) = 1 – e-p1t [15] 

 f1(t) = p1 e-p1t [16] 

As shown in Appendix A2, when q1 = 0 and F1(0) = F2(0) = 0, the cumulative penetration 
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where Γ(η,k) is the “upper” incomplete gamma function: 

 Γ(η, k) = dvev v

k

−∞ −∫ 1η  

The instantaneous adoption function f2(t) is obtained by substituting equations (15) and (17) into 

(14). With solutions for F1(t), f1(t), F2(t) and f2(t) available, one can enter those into equations (5) 

through (9) to obtain closed-form solutions for the population-level functions.  

A case of special interest is that of a pure-type mixture (PTM) of pure independents with q1 = 

0 and pure imitators with p2 = 0. In Figure 2, we plot the functions fm(t), hm(t), π(t), and φ(t) for 

three sets of parameter values chosen to illustrate various types of diffusion behavior possible in 

this model8: 

Case (a): p1 = .15, q2 = .50, θ = .25, w = .25; 

Case (b): p1 = .25, q2 = .40, θ = .15, w = .01;  

Case (c): p1 = .15, q2 = .65, θ = .60, w = .05. 

Diffusion process (a) exhibits the common unimodal, symmetric-around-the-peak adoption 

curve fm(t) well captured by the mixed-influence model. More interesting is that the hazard 

function is not monotonic as in the mixed-influence model. Rather, it is roughly bell-shaped and 

seems to converge to a value in between the minimum and the maximum. Here is why. The very 

earliest adopters consist of independents and the population hazard equals θp1 = .0375 at first. As 

more and more imitators adopt with hazard q2Fm(t), the population hazard increases. Once 

q2Fm(t) > p1, which can happen quickly when q2 is markedly larger than p1, the set of imitators 

not having adopted yet will start depleting faster than the set of independents not having adopted  

                                                 
8 Of the three shapes of adoption curve in Figure 2, pattern (a) is probably the most commonly reported in the 
diffusion literature. The other two shapes have not been documented as extensively, but do occur in previously 
analyzed data. For instance, the sales curve of several music CDs studied by Moe and Fader (2001) exhibit pattern 
(b) or (c), and the classic Medical Innovation data analyzed by Coleman et al. (1966) also exhibit pattern (c). 
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Figure 2: Plots of functions characterizing three PTM diffusion processes 

 (a) (b) (c) 
 p1=.15, q2=.5, θ=.25, w=.25 p1=.25, q2=.4, θ=.15, w=.01 p1=.15, q2=.65, θ=.6, w=.05 
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yet. As a result, the laggards remaining to adopt consist increasingly of independents—as 

indicated by the function π(t) reaching a minimum around t = 5 and then increasing to 1—and 

the population hazard converges back to an asymptote of p1 = .15. This pattern of relative speed 

of depletion also explains the non-monotonic pattern in φ(t), the proportion of adoptions taking 

place at time t stemming from independents. Note that in this diffusion process, independents 

make up the bulk not only of the early adopters, but also of the very late adopters. Importantly, 

the point at which φ(t) starts increasing and independents start gaining rather than losing 

importance (t = 7.3) occurs when the process is still far from complete and the remaining market 

potential is still quite sizable (37 % since Fm(t) = .63 at t = 7.3). 

Diffusion process (b) differs in several respects from process (a). First, the adoption curve f(t) 

does not have a smooth bell shape but exhibits a clear dip early on. This is easily explained. The 

independents adopt rapidly because p1 = .25 is rather high. However, imitators’ reaction to those 

independent adoptions is very muted because they imitate mostly fellow imitators (w = .01). As a 

result, the adoptions by independents show an exponential decline which is not immediately 

compensated by the imitators’ slowly developing adoptions, resulting in an early dip in the 

population curve. Note that independents account for the bulk of the adoptions only early in the 

diffusion process, as φ(t) declines steeply to close to zero. So, while the adoption curve does not 

fit the standard model, we do have the commonly expected association between being an imitator 

and being a late adopter. 

Diffusion process (c) looks mostly like an exponential-like process commonly observed for 

fast moving consumer goods, CDs and films, but with a marked boost after the early periods. 

What is happening is that most adopters are independents (θ = 60%), so the majority of 

adoptions follow an exponential decline. However, there is also a sizable segment of imitators 
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that are very sensitive to social contagion (q2 = .65), but mostly from fellow imitators rather than 

independents (w = .05). As a result, the imitators are slow to adopt at first, but once the snowball 

starts rolling, tend to adopt in a very short time. This is reflected in the shape of φ(t): the 

proportion of adoptions accounted for by independents tends to be close to 100%, except for a 

relatively narrow time window during which it first declines and then increases again. The 

contrast between process (a) and (c) is informative: They have similar p1 and q2 values, and the 

composition of both adopters φ(t) and remaining non-adopters π(t) tend to evolve similarly, as do 

their respective population hazard functions h(t). Yet, because of the different segment sizes θ 

and contagion weights w in the two processes, the resulting adoption curves are quite different.  

3.3. Some special cases of theoretical interest 

Our review of prior theories and frameworks indicates that three cases of the social influence 

structure captured by w are of special theoretical interest. The first is where imitators imitate only 

influentials (w = 1) such that h2(t) = p2 + q2F1(t).9 The second is where imitators imitate only 

other imitators (w = 0) such that h2(t) = p2 + q2F2(t). The third is where imitators mix randomly 

with both independents and imitators such that w = θ and h2(t) = p2 + q2Fm(t). In the first and 

third case, F2(t) and f2(t) are easily derived by imposing w = 1 and w = θ , respectively, in 

equations (12), (14) and (17). The second case poses an issue when p2 = 0 and the process among 

imitators is only a function of prior adoptions by other imitators: The process is then simply the 

well-known logistic process, which does not allow for F2(0) = 0.10  

A fourth case of special interest is less obvious: When all independents adopt instantaneously 

                                                 
9 This model, with the additional constraints q1 = p2 = 0 was also developed independently from us by Beck (2005). 
10 Note, when p2 = w = 0 or p2 = θ = 0, the process among imitators cannot get started within the model. As is well 
known, the closed-form solution for the logistic requires that F2(0) > 0. Hence, while the cases with p2 = w = 0 or p2 
= θ = 0 are conceptually nested within the AIM, their closed-form solutions are not as they make different 
assumptions about the initial conditions. 
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with p1 → ∞ and pure imitators (p2 = 0) have a very specific influence weight w = θ(1+q2−θ)/q2 

> θ, then the PTM reduces to the MIM (see Technical Appendix A)11. 

 
4. Relation to prior diffusion models 

4.1. Mixed-influence model vs. pure-type mixture model 

As the closed-form solutions and the plots in Figure 2 indicate, the mixed-influence model 

(MIM) does not capture diffusion processes in a discrete mixture of pure independents and pure 

imitators (PTM). Two exceptions to this are the case where p1 = 0 or θ = 0 and both models 

collapse to the logistic model, and the case where q2 = 0 or θ = 1 and both models collapse to the 

exponential model. A third, less obvious, exception is when p1 → ∞ and w = θ(1+q2−θ)/q2 > θ, 

and the PTM also reduces to the MIM. 

Our analysis allows one to assess the widely accepted notion (e.g., Mahajan et al. 1993) that 

rewriting the standard differential equation for the mixed influence model (eq. 1) into: 

 f(t) = p [ 1 - F(t) ]  +  qF(t) [ 1 - F(t) ] [18]  

allows one to interpret the term p [ 1 - F(t) ] as the number adoptions made by people adopting 

with hazard p and the term qF(t) [ 1 - F(t) ] as the number of adoptions made by people adopting 

with hazard qF(t). While the manipulation of the equation is evidently correct, the interpretation 

is not. The main reason is that, in each term, the fraction of actors not having adopted yet, 1-F(t), 

refers to the total population, rather than to the fractions in each of the segments, 1-F1(t) and 1-

F2(t). In addition, the sizes of each segment are ignored. The correct expression for a mixture is: 

 fm(t) = θ f1(t)  +  (1−θ) f2(t)    

  = θ h1(t) [1−F1(t)]  +  (1−θ) h2(t) [1−F2(t)]       

  = θ p1 [ 1 - F1(t) ]  +  (1-θ) q2[wF1(t) + (1-w) F2(t)] [ 1 - F2(t) ] [19] 
                                                 
11 All Technical Appendices are available online at the Marketing Science website. 
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When imitators randomly mix with independents and imitators and are equally affected by both, 

then w = θ and the equation simplifies to: 

 fm(t) = θ p1 [ 1 - F1(t) ]  +  (1-θ) q2Fm(t) [ 1 - F2(t) ]  [20] 

Even if p = θp1, q = (1-θ)q2, and one omits the m-subscript from the population-level fm(t) and 

Fm(t), the mixture equation (20) is different from the mixed-influence equation (19).  

Within a homogeneous population with mixed influence, one can only interpret the relative 

size of the two terms p[1-F(t)] and qF(t)[1-F(t)] as reflecting the relative influence of time-

invariant elements (p) versus social contagion (qF(t)) on the adoptions at time t, keeping in mind 

that each and every adoption is influenced by both p and qF(t) for any t > 0. For instance, the 

ratio p/(p+qF(t)) can be used as a measure of the relative strength of time-invariant elements at 

time t (Lekvall and Wahlbin 1973), as can the decomposition presented by Daley (1967) and 

Mahajan, Muller and Srivastava (1990), but neither can be interpreted as the fraction of all 

adoptions at time t stemming from pure-type actors adopting a priori with hazard p. 

Another common belief about the mixed-influence model that is inconsistent with its 

mathematical structure is that “the importance of innovators will be greater at first but will 

diminish monotonically with time,” where innovators are defined as those who “are not 

influenced in the timing of their initial purchase by the number of people who have already 

bought the product” (Bass 1969, p. 217). In a homogenous population where everyone behaves 

according to the hazard rate p + qF(t), the only actors with hazard p are those adopting at t = 0 

when F(0) = 0. Anyone adopting afterwards is influenced by prior adoptions. Hence, in the 

mixed-influence model, the proportion of adoptions occurring at time t that are unaffected by 

social contagion follows a step function with value 1 at t = 0 and value 0 for any t > 0. 

Conversely, in a mixture with p1 << ∞, the proportion of independents adopting with a constant 
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hazard, i.e., function φ(t), need not diminish monotonically over time, as shown in Figure 2. 

4.2. Consequence of imposing a mixed-influence structure on a pure-type mixture process 

From comparing equations (18) and (20) one may get the impression that a diffusion process 

in a discrete mixture with h1(t) = p1 and h2(t) = q2Fm(t) could be approximated quite well by a 

mixed-influence model with h(t) = p + qF(t), even if they are not identical. However, the 

adoption functions fm(t) and hazard functions hm(t) suggest some potentially important 

deviations. More insight comes from re-writing the expression for fm(t) in eq. (20) into a form 

similar to that for f(t) in the mixed-influenced model (following Manfredi et al. 1998): 

 fm(t) = θ p1 [ 1 - F1(t) ]  +  (1- θ) q2Fm(t) [ 1 - F2(t) ] 

  = [ θ p1 )(1
)(1 1

tF
tF

m−
−   +  (1- θ) q2Fm(t) 

)(1
)(1 2

tF
tF

m−
−  ] [ 1 - Fm(t) ] 

  = [ p(t)  +  q(t) Fm(t) ] [ 1 - Fm(t) ] [21] 

where 

 p(t) = θ 
)(1
)(1 1

tF
tF

m−
−  p1 = π(t) p1 [22] 

 q(t) = (1-θ) 
)(1
)(1 2

tF
tF

m−
−  q2 = [1−π(t)] q2 [23] 

Deleting the m subscript from equation (21) to reflect one’s ignoring that the population consists 

of a mixture results in: 

 f(t) = [ p(t)  +  q(t) F(t) ] [ 1 - F(t) ] [24] 

So, one is able to re-write the pure-type mixture model with w = θ into an expression akin to the 

mixed-influence model, but with both hazard rate parameters varying systematically over time. 

More specifically, p(t) changes in exactly the same way as π(t), the proportion of actors not 

having adopted yet by time t that belong to the segment of independents. At t = 0, π(t) = θ and  
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p(t) = θp1. Since at the very beginning adoption tends to be more prevalent among independents 

than among imitators, the number of independents who have not adopted yet gets depleted faster 

than the number of imitators who have not. Consequently, π(t) and p(t) decline at first. However, 

when q2 >> p1, the relative speed of adoption between the two segments quickly reverses and the 

set of actors who have not adopted yet tends to become increasingly dominated by independents. 

As a result, π(t) and p(t) increase over most of the time window. The reverse pattern takes place 

for  q(t) = [1−π(t)] q2. It starts at (1-θ)q2, increases for a very short period, but starts decreasing 

very soon. Note, when θ ≈ 0 or θ ≈ 1, then π(t) will not vary much and neither will p(t) or q(t). 

In short, specifying a mixed-influence model with h(t) = p + qF(t) when the true data 

generating process is that of a discrete mixture with h1(t) = p1 and h2(t) = q2Fm(t) where q2 >> p1 

will yield increasing values of p and decreasing values of q (except for the first very few 

periods). This is consistent with the pattern in mixed-influence model estimates described in 

prior research. Though Van den Bulte and Lilien (1997) focused their analysis on ill-

conditioning in the absence of model misspecification, they recognized that unobserved 

heterogeneity in p and q forms an alternative explanation for the systematic changes they 

observed in empirical applications. Our results formalize their argument for the case of two 

segments where one segment has p = 0 and the other has q = 0.  

4.3. Relation to other two-segment models 

Figure 3 shows how our models relate to a few other models, including two earlier two-

segment models. Tanny and Derzko (1988) used a discrete mixture with h1(t) = p1 and h2(t) = p2 

+ q2Fm(t). Steffens and Murthy (1992) used a discrete mixture with h1(t) = p1 + q1F1(t) and h2(t) 

= q2Fm(t). So, as shown in Figure 3, both these models conceptually nest both the mixed-

influence model and PTM3 with w = θ. The diagram also shows that, like the mixed-influence 
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model, the pure-type mixture models have both the exponential and logistic models nested in 

them, with the exception that PTM1 with w = 1 does not nest the logistic because if h2(t) = 

q2F1(t) and either θ = 0 or p1 = 0, then h2(t) is undefined. Note, only the PTMs feature two “pure 

types,” i.e., independents and imitators without any mixed influence.  

 
Figure 3. Relations among the AIM and PTM models, the Steffens-Murthy and Tanny-

Derzko models, and the mixed-influence, exponential, and logistic models a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a A model receiving an arrow is conceptually nested in the model where the arrow originates. For 
instance, the general PTM with w = 1 generates PTM1 and the PTM1 with q2 = 0 generates the 
exponential. The link between PTM and MIM is indicated by a broken line as it holds only as p1 → ∞. 
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general and that his partial solution still contained unknown integrals. In contrast, we specify the 

process among independents and solve the equations using incomplete gamma functions, making 

parameter estimation and empirical analysis possible.  

 
5. Empirical analysis 

To what extent does the two-segment asymmetric influence model, consistent with several 

theoretical frameworks, agree with empirical diffusion patterns? And how well does it do 

compared to the mixed-influence model and other, more flexible, models? We provide insights 

on those issues through an empirical analysis of 33 data series. 

5.1. Data 

One must use an informative variety of data sets if one is to draw sound conclusions on 

model performance. We therefore analyze four sets of data. The first consists of a single series 

on the diffusion of the broad-spectrum antibiotic tetracycline among 125 Midwestern physicians 

over a period of 17 months in the mid-1950s. This series comes from the classic Medical 

Innovation study (Coleman et al. 1966). It warrants special attention because it is commonly 

accepted as an instance of diffusion in a mixture of independents and imitators (e.g., Jeuland 

1981; Lekvall and Wahlbin 1973; Rogers 2003).  

The second set of data series consists of 19 music CDs, also a category where a two-segment 

structure is a priori likely to exist. Some customers are dedicated fans buying products by their 

favorite performers almost unconditionally, while others end up buying the CD only after it has 

become popular and a must-buy (Farrell 1998; Yamada and Kato 2002). So, q1 = 0 and p2 = 0 are 

quite possible. We use the weekly U.S. sales data analyzed previously by Moe and Fader 

(2001).12 Since people are very unlikely to buy two identical CDs for themselves or to replace an 

                                                 
12 The full set consists of 20 data series, but we deleted one that still had not reached the time of peak sales. 
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older copy, the sales data are unlikely to be contaminated by multiple or repeat purchases and 

can be treated as new product adoptions. Figure 4 shows the data of four CDs each illustrating 

one typical path: a rather smooth decline for Blind Mellon, an early dip followed by a recycle for 

AdamAnt, a slowly developing “sleeper” pattern for Everclear, and a bell shape for Dink.  

Figure 4. Weekly sales (adoption) data for four CDs 

 
 
The third set of data consists of five series of high-technology products, for which a two-

segment structure with q1 > 0 is quite possible (e.g., Moore 1991). The first three series consists 

of adoptions of CT scanners, ultrasound and mammography equipment among hospitals of all 

sizes (Van den Bulte and Lilien 1997). The fourth series consists of the penetration between 

1979 and 1993 of CT scanners among hospitals with 50 to 99 beds. Controlling for size may be 

important, as larger hospitals have larger budgets and more highly skilled staff, and these 

differences may mask genuine contagion processes (e.g., Davies 1979). The fifth series consists 
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of the penetration of personal computers among US households. The series covers the years 

1981-1996, but to avoid left-censoring artifacts we impose 1975 as the actual launch year. The 

first three series are roughly bell-shaped, the latter two series show two “bells” separated by a 

dip or “chasm”. 

The final set is a miscellaneous mix of 8 data series analyzed previously by Van den Bulte 

and Lilien (1997) and Bemmaor and Lee (2002) (these studies also included the tetracycline and 

three of the high-tech series). There is no compelling a priori reason to expect a mixture of 

independents and imitators to be able to account better for those diffusion data than traditional 

models, and several innovations need not have diffused through contagion at all (Griliches 1962; 

Van den Bulte and Stremersch 2004). The adoption curves all have a very pronounced bell 

shape, with several showing skew that the MIM cannot account for (Bemmaor and Lee 2002). 

5.2. Parameter estimates 

One of our closed-form solutions involves Gaussian hypergeometric functions the estimation 

of which is very troublesome.13 Fortunately, one can estimate the AIM through direct integration, 

that is, by computing non-linear least squares estimates at the same time as one numerically 

solves the following differential equation14: 

dX(t)/dt = M [θ f1(t) + (1−θ) f2(t) ] + ε(t) 

 = M [θ f1(t) + (1−θ) q2 {wF1(t)+(1-w) 
θ−

θ−
1

)(/)( 1 tFMtX } {1-
θ−

θ−
1

)(/)( 1 tFMtX }] + ε(t)  

[25] 
where X(t) is the cumulative number of adopters observed at time t, f1(t) and F1(t) are the closed-

form solutions to the adoption and penetration functions of the MIM, and f2(t) is expressed as in 

                                                 
13 Nonlinear regression using the “difference in-closed-form-cdfs” approach (Srinivasan and Mason 1986) in R and 
Mathematica either did not converge at standard convergence criteria or enabled us to obtain point estimates but not 
standard errors. We experienced these problems even with simulated data, which rules out model misspecification as 
an explanation for these difficulties. Maximum likelihood estimation is known to be troublesome as well, even when 
the parameters of interest enter the function linearly rather than non-linearly as in the AIM (e.g., Fader et al. 2005). 
14 This can be done quite conveniently, e.g., using the model procedure in SAS or the odesolve package in R. 
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eq. (15), but with 
θ−

θ−
1

)(/)( 1 tFMtX replacing F2(t). The latter is based on X(t) = MFm(t) (absent 

error) and Fm(t) = θF1(t) + (1−θ)F2(t). We allow the error term ε(t) ∼ N(0,σ2) to exhibit serial 

correlation up to order 2 when the time series contains more than 20 observations or the Durbin-

Watson statistic falls outside the 1.5-2.5 range. We impose that hazard parameters p1, q1, p2, and 

q2 be non-negative (≥ 0) and that 0 ≤ θ ≤ 1. Because hazard rates can be larger than one in 

continuous time, we do not impose p1, q1, p2, and q2 ≤ 1. As to w, we impose 0.01% ≤ w  ≤ 1, 

choosing a very small but positive lower bound so the model itself ensures the “seeding” of the 

contagion process among imitators even when p2 = 0. Because estimation through direct 

integration fits the cumulative adoptions X(t) rather than the periodic adoptions X(t) - X(t-1), the 

R2 values are often extremely high and non-informative (the lowest we obtained was .992, and 

several were higher than 0.9995). So, we report the mean absolute percentage error (MAPE) 

instead, as well as an alternative R2 metric defined as the squared Pearson correlation between 

the actual periodic adoptions and the difference in predicted cumulative adoptions ( 2
pR ). 

Table 2 reports the results of estimating the AIM to all 33 data series15. Values for p1 tend be 

smaller than 0.3. There are two exceptions to this: Foreign Language where θ is so low that fm(0) 

= θ p1 equals only 0.04, and the Beastie Boys CD that exhibited an extreme “blockbuster” 

pattern, i.e., extremely quickly declining sales. Values for q1 show much more variance. This is 

especially so for CDs. For about half of them, q1 equals zero, indicating the absence of word-of-

mouth among influentials. In six cases, q1 is larger than one, suggesting very strong word-of-

mouth among influentials. However, these large estimates are very imprecise and only two are 

significant at 95% confidence. Values for p2 are most often zero and only 4 of the 33 estimates  

                                                 
15 We do not report the ceiling parameter values M due to space constraints in the Table. 
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Table 2. IIM results for all data # 
______________________________________________________________________________ 
 

 N p1 q1 p2 q2 θ w      AR1 AR2 DW MAPE 
2
pR  

Tetracycline 18 0.102 c  0* 0* 0.998 c  0.81 c/c 0.01%*   1.82 2.2% 0.799 

AdamAnt 57 0.061 c 0* 0* 0.369 c 0.63 c/c 0.10 /c -0.14 0.07 0.65 0.6 0.986 
Beastie Boys 97 1.256 c 0* 0* 0.041 c 0.28 c/c 1* 0.20 c 0.06 c 0.67 0.2 0.991 
Blind Mellon 34 0.210 c 3.291 0* 0.073 c 0.24 c/c 1* 0.40 0.16 1.44 0.5 0.964 
Bob Seger 24 0.084 c 0* 0* 1.357 c 0.81 c/c 0.01%* -0.02 0.08 1.67 1.3 0.814 
Bonnie Raitt 1 107 0.291 c 0* 0* 0.040 c 0.41 c/c 1* 0.07 a -0.09 b 1.31 0.2 0.984 
Bonnie Raitt 2 22 0.096 c 0* 0* 1.538 c 0.74 c/c 0.01%* 0.02 -0.03 1.45 1.9 0.823 
Charles & Eddie 32 0.024 b 0.541 c 0.050 c 0.007 0.26 a/c 0.01% -0.82 -0.70 1.75 0.7 0.971 
Cocteau Twins 127 0.000 14.848 0* 0.051 c 0.10 c/c 1* 0.86 c 0.25 b 1.88 0.2 0.950 
Dink 73 0.019 c 0.162 c 0* 0.011 0.67 a/ 1* 0.36 c 0.37 c 1.67 1.3 0.938 
Everclear 46 0.024 0.273 a 0* 0.188 c 0.05 c/c 0.01%* 0.37 a -0.22 1.88 3.2 0.969 
Heart 124 0.000 1.909 c 0.074 c 0* 0.08 c/c 0.01% -0.18 c 0.04 0.33 0.3 0.993 
John Hiatt 24 0.274 3.282 a 0* 0.192 b 0.16 a/c 0.29 /c 0.37 § 2.04 1.1 0.683 
Luscious Jackson 85 0.065 4.153 0* 0.028 c 0.10 c/c 1* 0.41 c 0.20 1.43 0.4 0.883 
Radiohead 73 0.041 c 0.141 c 0.001 0.102 c 0.16 /c 0.01% 0.43 c 0.10 1.44 1.5 0.867 
Richard Marx 113 0.122 c 0.074 0.023 a 0.023 0.43 c/c 0.01% 0.21 c -0.08 0.92 0.3 0.982 
Robbie Robertson 79 0.075 c 0.054 0* 0.010 0.58 c/a 1* 0.22 b -0.04 1.32 0.6 0.888 
Smoking Popes 40 0.089 c 0.143 c  0* 0.142 c 0.75 c/c 0.01%* -0.22 b 0.01 0.96 0.7 0.966 
Supergrass 38 0.157 2.715 0* 0.058 a 0.09 b/c 0.66 a/ 0.71 c 0.41 a 1.43 0.6 0.876 
Tom Cochrane 22 0.108 c 0* 0* 1.741 0.97 c/ 0.72 -0.01 0.13 0.72 1.8 0.915 

Home PC 17 0.000 0.407 c 0* 2.567 c 0.65 c/c 0.65**     2.20 11.9 0.333 
Mammography 15 0.000 1.350 c 0.015 b 0.602 c 0.38 b/b 0.38**   2.89@ 5.9 0.976 
Scanners (all) 18 0.003 c 0.634 c 0* 0.476 0.63 c/c 0.01 /c     2.05 19.7 0.927 
Scanners (50-99) 15 0.002 1.031 a 0.000 0.821 c 0.60 c/c 0.01%*    1.79 15.0 0.831 
Ultrasound 15 0.022 0.309 c 0* 1.113 b 0.58 a 0.00   2.49 7.7 0.937 

Hybrid corn 1943 16 0.000 0.868 c 0.192 2.866 0.85  c/c 0.01%* 0.88 a 0.27 2.39 13.1 0.974 
Hybrid corn 1948 15 0.037 0.482 0* 0.861 0.20 0.01%*   2.47 12.6 0.744 
Accel. program 13 0.001 0.786 c 0* 2.394 c 0.85 c 0.01%*   2.44 26.9 0.842 
Foreign language 13 0.656 0* 0* 0.716 c 0.06  /c 0.00 a   2.81@ 3.1 0.919 
Comp. schooling 15 0.006 0.746 b 0* 0.694 0.69 0.01 /c   1.82 17.6 0.627 
Color TV 17 0.000 a 0.361 c 0* 1.272 c 0.78 c/c 0.01%*   1.48@ 4.0 0.391 
Clothes dryers 17 0.000 0.508 c 0* 5.593 b 0.61 c/c 1*   2.04 3.5 0.819 
Air conditioners 17 0.000 1.044 a 0.000 0.511 c 0.28  /c 0.01%*   2.37 9.5 0.706 
______________________________________________________________________________ 
 
# N = number of observations (incl. X(0) = 0); AR1, AR2 = first-order and second-order serial correlation, DW = 

Durbin-Watson statistic, 2
pR  =  r2 of actual adoptions with difference in predicted cumulative adoptions.  

* Boundary constraint; ** constrained to equal θ to aid convergence; § including AR2 results in convergence 
problems; @ adding AR1 and AR2 does not improve DW. 
a  p ≤ .05, b  p ≤ .01, c  p ≤ .001; for θ and w, the entry left of the slash (/) refers to the significance of the test against 
0 and those to the right refer to the test against 1. 
 
 
are significantly different from zero. Values for q2 also show considerable variance, with several 

high values recorded for the set of miscellaneous innovations. The latter may result from the 

strong left skew in the adoption time series (Bemmaor and Lee 2002). Finally, θ is often 

significantly different from both 0 and 1, indicating that the AIM does not reduce to the mixed-

influence or logistic models, and only weakly correlated with w (r = -.16). That θ is often larger 
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than 2.5% or 16%, traditional values used to separate innovators from imitators based on time of 

adoption, is an indication—in addition to the φ(t) function—that the dichotomy based on drivers 

of adoption underlying the model is conceptually different from that based on time of adoption. 

The MAPE and 2
pR  values indicate that model tracks the data well. While the MAPE is higher 

than 10% for some of the shorter data series, like the 15% value for scanners in small hospitals 

with 50-99 beds, such high MAPE values can be misleading as they tend to result from a few 

deviations early in the process when the base for calculating the percentage error is small. Figure 

5 shows that the model can indeed track bimodal patterns rather well even with a high MAPE. 

 
Figure 5. Actual and predicted adoptions of CT scanners in small hospitals (50-99 beds) 
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Since combining nonlinear least squares estimation with direct integration may be new to 

marketing (diffusion) researchers, we briefly report, for the case of tetracycline, estimates 

obtained through direct integration (DI) with those obtained through the popular Srinivasan-

Mason (SM) procedure fitting the difference in closed form cdfs to the difference in cumulative 

adoptions. The results in Table 3 clearly show that both procedures produce very similar  



 32

Table 3. AIM, PTM and MIM results for Medical Innovation tetracycline data, using 
estimation by direct integration (DI) and by the Srinivasan-Mason procedure (SM) # 

______________________________________________________________________________ 
 M p1 q1 p2 q2 θ w      AR1 AR2 DW MSE MAPE 

2
pR  

HMIM-DI 127.0 c 0.102 c  0* 0* 0.998 c  0.81 c/c 0.01%* - - 1.82 2.10 2.2% 0.799 

PTM-DI 127.0 c 0.102 c  - - 0.998 c  0.81 c/c 0.01%* - - 1.82 2.10 2.2 0.799 
PTM-SM 131.2 c 0.097 c  0* 0* 1.059 c 0.81 c/c 0.03 c/c - - 1.69 2.02 38.8 0.908 

MIM-DI 111.6 c 0.097 a  0.155 - - - - 0.10 0.14 1.47 4.15 2.6 0.717 
MIM-SM 111.3 c 0.085 a  0.188 - - - - 0.32  1.82 4.35 43.1 0.784 
______________________________________________________________________________ 
 
# AR1, AR2 = first-order and second-order serial correlation; DW = Durbin-Watson statistic; For estimation on 

cumulative data using direct integration (DI), 2
pR  = r2 of actual adoptions with difference in predicted cumulative 

adoptions; For estimation on periodic data using SM-method, 2
pR  = r2 of actual and predicted adoptions. 

* Boundary constraint. 
a  p ≤ .05, b  p ≤ .01, c  p ≤ .001; for θ and w, the entry left of the slash (/) refers to the significance of the test against 
0 and those to the right refer to the test against 1. 
 
 
estimates for the PTM and the MIM. Direct integration has somewhat higher serial correlation 

because it fits the cumulative adoptions X(t) rather than the periodic adoptions X(t) - X(t-1). The 

difference in dependent variable also explains why direct integration produces much lower 

MAPE values even the mean squared error (MSE) values are very similar. That the DI method 

leads to lower 2
pR  values than the SM method is not surprising, since the latter method finds 

those estimates that minimize the sum of squared errors (SSE), and hence maximizes the 

correlation, between predicted and observed periodic adoptions. The parameter estimates of the 

AIM and PTM, with the zero value of q1 meaning that segment 1 consists of independents and 

the high value of θ meaning that contagion affected only a minority, are consistent with previous 

analyses using individual-level data on adoption times and actual network structure (Coleman et 

al. 1966; Van den Bulte and Lilien 2003). So is the decomposition of total adoptions in Figure 6. 

The graph indicates that by month 11, when 25% of all physicians still had to adopt, all imitators 

had already adopted and the “laggards” consisted only of independents. This is consistent with  
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Figure 6. Actual and predicted number of adopters in Medical Innovation 
(Predictions from SM estimates of the PTM without serial correlation) 
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the original finding by Coleman et al. (1966) using individual-level data that the laggards tended 

to be very poorly integrated in the social network and hence unaffected by social influence. 

Finally, the mixture models generate an estimate of M close to the entire sample of physicians (N 

= 125), whereas the mixed-influence estimates are very close to the number of adopters having 

adopted at the end of the observation period (X(t17) = 109). This is consistent with our analytical 

result that imposing a mixed-influence model on a mixture process can generate the kinds of 

estimation artifacts documented by Van den Bulte and Lilien (1997).  

5.3. Descriptive performance compared to benchmark models 

To assess the descriptive performance of the two-segment model, we compare it against that 

of the mixed-influence (MIM), Gamma/Shifted Gompertz (G/SG), Weibull-Gamma (WG), and 

Karmeshu-Goswami (KG) models. Since all these benchmark models have a closed-form 

solution, we estimate them using the standard Srinivasan-Mason (1986) approach. To avoid 

having comparisons across model specifications be affected by differences in estimation method 

and dependent variable, we do not estimate the full AIM using the DI approach. Instead, we 

estimate two restricted versions, one with w = 0 and the other with q1 = 0, that lead to closed-
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form solutions for Fm(t) that do not involve Gaussian hypergeometric functions and that can 

hence be estimated using the SM approach. 

We assess model performance under three error structures: (1) i.i.d. additive error, (2) 

additive error with AR1 serial correlation, and (3) lognormal multiplicative error.16 Estimating 

the models without serial correlation provides a more informative assessment of descriptive 

performance because incorporating serial correlation into a model might alleviate a poor fit of its 

mean function to the data (Franses 2002). Still, the question remains to what extent serial 

correlation alone helps close the gap between two models. 

We use four measures of descriptive performance: mean absolute deviation (MAD), mean 

absolute percentage error (MAPE), mean square error (MSE) and the Bayesian Information 

Criterion (BIC). Note, only the latter two penalize models with a larger number of free 

parameters.17 To save space and aid interpretation, we report only the ratio of the baseline 

models’ MSE and MAD to that of the two-segment model. This relative measure controls for 

differences across data series in their total variance, with 1 being the neutral value and higher 

values indicating superior fit of the two-segment model. To save space, we report only the 

difference in BIC and MAPE, with 0 being the neutral value and higher values indicating 

superior fit of the two-segment model.  

Table 4 reports the performance indicators averaged for each of the four sets of data as well 

as for all 33 data series. Technical Appendix C reports results for the individual series. The first 

panel pertains to models with additive i.i.d. errors. Let us start by focusing on the BIC, where a  
                                                 
16 For the model with lognormal multiplicative error, we estimate its log-transform, i.e., ln{X(t) - X(t-1)} = lnM + 
ln{F(t) - F(t-1)} + ε(t), where F(t) is the closed-form solution of the cdf under the model, and ε(t) is i.i.d. normal. 
17 MSE = SSE / (n - k), where n is the number of observations and k the number of free parameters. BIC = -2LLc + 
kln(n), where LLc is the concentrated log-likelihood function. Under the assumption of normally distributed errors, 
the latter is computed from the non-linear regression solution as LLc = ½n{ln(n) - 1 - ln(SSE)} (e.g., Davidson and 
MacKinnon 1993; Seber and Wild 1989). The use of the concentrated rather than true log-likelihood is immaterial 
for our purpose. For instance, for nested models, the likelihood ratio test statistic constructed using the concentrated 
log-likelihood remains χ2 distributed (Seber and Wild 1989). 
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Table 4. Descriptive performance of the two-segment model compared to mixed-influence, 
Gamma/Shifted Gompertz, Weibull-Gamma, and Karmeshu-Goswami models for different 

error structures # 
______________________________________________________________________________ 
 
1. Additive error without serial correlation (AR0) 
 
 BIC difference MAPE difference  MSE ratio MAD ratio 
 
 MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG 
 
Tetracycline 10.44 13.27 14.45 8.99 7.96 8.10 7.88 -0.11 2.21 2.38 2.55 1.46 1.71 1.72 1.76 1.24 
Music CDs 58.83 44.09 34.98 1.17 18.73 17.92 8.82 -1.58 2.66 2.06 2.21 0.92 1.69 1.54 1.47 0.98 
High-tech 9.84 3.82 4.47 2.05 51.19 6.75 7.16 8.21 2.41 1.57 1.74 1.10 1.92 1.35 1.47 1.05 
Miscellaneous 0.73 -2.16 0.54 -0.55 5.56 1.13 3.83 -2.76 1.21 0.93 1.11 0.90 1.24 1.05 1.11 0.88 
 
All 35.14 25.27 19.51 1.12 20.17 11.67 7.12 -0.34 2.14 1.62 1.76 0.96 1.60 1.37 1.37 0.97 
 
2. Additive error with serial correlation (AR1) 
 
 BIC difference MAPE difference  MSE ratio MAD ratio 
 
 MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG 
 
Tetracycline 8.92 8.19 10.06 8.81 4.44 -11.11 6.94 1.14 2.00 1.75 2.13 1.47 1.73 1.44 1.82 1.17 
Music CDs 34.19 22.59 28.24 7.65 4.87 2.79 9.30 2.10 2.12 1.65 1.93 1.11 1.47 1.17 1.54 1.11 
High-tech 12.67 5.15 7.83 0.22 35.39 6.80 6.82 7.22 2.97 1.70 2.19 0.98 2.12 1.46 1.67 0.91 
Miscellaneous 2.62 -1.62 2.79 -1.59 4.12 5.16 1.33 -5.02 1.30 0.91 1.25 0.79 1.23 0.99 1.13 0.80 
 
All 22.45 12.75 16.25 4.21 8.60 3.63 6.39 1.09 1.95 1.42 1.75 1.01 1.48 1.17 1.43 0.99 
 
3. Multiplicative error (log-log model) without serial correlation (AR0) 
 
 BIC difference MAPE difference  MSE ratio MAD ratio 
 
 MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG MIM G/SG WG KG 
 
Tetracycline -1.24 -1.37 1.09 -1.68 3.21 3.02 2.90 2.08 1.11 1.10 1.16 0.78 1.24 1.22 1.25 1.02 
Music CDs 51.73 35.95 15.32 4.04 1.58 1.20 0.63 -0.09 2.34 1.97 1.54 0.97 1.70 1.54 1.30 0.95 
High-tech 9.10 -7.29 3.51 -7.93 8.54 4.38 14.49 -5.56 2.25 0.76 1.65 0.55 1.81 1.06 1.83 0.74 
Miscellaneous 4.46 -0.45 7.82 1.68 14.04 -4.75 15.11 0.97 1.60 1.04 1.93 1.03 1.37 1.01 1.48 0.96 
                 
All 32.32 19.77 11.26 1.78 5.74 0.14 6.54 -0.44 2.06 1.45 1.64 0.92 1.60 1.31 1.40 0.93 
 

______________________________________________________________________________ 
 
# To save space and aid interpretation, we report only the relative fit performance by comparing the fit of the two-
segment discrete mixture model against that of the alternative models. For BIC and MAPE, we report the alternative 
models’ value minus that of the two-segment model. For MSE and MAD, we report the alternative models’ value 
divided by that of the two-segment model. So, for the BIC and MAPE differences, the neutral value is 0; for the 
MSE and MAD ratios, it is 1. For all metrics, higher values indicate superior fit of the two-segment model. For the 
BIC and MAPE differences, the average values reported are arithmetic means. For the MSE and MAD ratios, they 
are geometric means as this is a better measure of central tendency of a ratio than the arithmetic mean. 
 
 
 
3-point difference is large enough to be evidence of superior fit and a 10-point difference 

provides strong to very strong evidence of superior fit (Raftery 1995). The two-segment model 

fits markedly better than the MIM, G/SG and WG models, for tetracycline, music CDs, and high-
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tech products, and but not for the miscellaneous products where the presumption of a discrete 

mixture is not strong a priori. The two-segment model fits about equally well as the continuous-

mixture KG model, except for tetracycline where it beats it by a sizable margin. The same 

pattern exists for the three other performance measures: The two-segment model fits markedly 

better than MIM, G/SG and WG for data where a two-segment structure is a priori likely, but not 

elsewhere, and the two-segment model fits about equally well as the Karmeshu-Goswami model 

in all data sets.  

Turning our attention to the second panel in Table 4, we see that allowing for serial 

correlation in the more poorly specified models tends to somewhat narrow the gap with the two-

segment model. But the performance gap for products where a two-segment structure is a priori 

likely does not vanish. For high-technology products, adding serial correlation even increases the 

gap in BIC and MSE vis-à-vis MIM, G/SG and WG. The results in the third panel of Table 4 

indicate that using a multiplicative rather than additive error structure does not affect the main 

conclusion from the first two panels very much: The two-segment model fits about as well as the 

continuous-mixture KG model, and markedly better than the MIM, G/SG and WG models for 

new products for which where a two-segment structure is a priori likely. 

 
6. Conclusion 

We have analyzed the diffusion of innovations in markets with two segments: influentials 

who are more in touch with new developments and who affect another segment of imitators 

whose own adoptions do not affect the influentials. Such a structure with asymmetric influence is 

consistent with several theories in sociology and diffusion research, including the classic two-

step flow hypothesis and Moore’s more recent technology adoption framework. Our model 
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allows diffusion researchers to operationalize these theories without recourse to micro-level 

diffusion data and to estimate parameters from real data. There are four main results.  

(1) Diffusion in a mixture of influentials and imitators can exhibit the traditional symmetric-

around-the-peak bell shape, asymmetric bell shapes, as well as a dip or “chasm” between the 

early and later parts of the diffusion curve. In contrast to Moore’s contention, the model suggests 

that it need not always be necessary to change the product to gain traction among later adopters 

and the adoption curve to swing up again. Tetracycline is an example. 

(2) The proportion of adoptions stemming from independents need not decrease 

monotonically; it can also first decline and then rise again to unity. This result disproves a 

common contention among diffusion researchers based on an erroneous mixture interpretation of 

the mixed-influence model (e.g., Bass 1969; Mahajan, Muller and Bass 1993; Rogers 2003).  

(3) Specifying a mixed-influence model to a mixture process with pure independents and 

pure imitators can generate systematic changes in the parameter values. As several authors have 

noted, diffusion within a pure-type mixture of independents and imitators with hazards p and 

qF(t), respectively, is distinct from diffusion in a homogenous population with mixed-influence 

where everyone adopts with hazard p + qF(t). The closed-form solutions we present not only 

prove this mathematically but also show that imposing a mixed-influence specification on a 

pure-type mixture process can generate the systematic changes in the parameter values reported 

by Van den Bulte and Lilien (1997), Bemmaor and Lee (2002), and Van den Bulte and 

Stremersch (2004), unless θ is close to either 0 or 1, or unless p1 → ∞ and pure imitators (p2 = 0) 

have a very specific influence weight w = θ(1+q2−θ)/q2 > θ. 

(4) Empirical analysis of four sets of data comprising a total of 33 different data series (the 

classic Medical Innovation data, 19 music CDs, 5 high-tech products, and 8 miscellaneous 
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innovations) indicates that the two-segment model fits markedly better than the mixed-influence, 

the Gamma/Shifted Gompertz, and the Weibull-Gamma models, at least for innovations for 

which a two-segment structure is likely to exist. Hence, the model does better when it is 

theoretically expected to and does not when it is not theoretically expected to. The two-segment 

model fits about equally well as the mixed-influence model proposed by Karmeshu and 

Goswami (2001) where p and q vary in a continuous fashion. Overall, the findings on descriptive 

performance are robust to changes in the error structure and indicate that the discrete-mixture 

model is sufficiently different and the data sufficiently informative for the model to fit real data 

better than other models. 

The models we presented provide sharper insight into how social structure can affect macro-

level diffusion patterns, and should prove useful in five areas of application where influentials 

and imitators are a priori likely to exist. The first two are high-technology and health care 

products, including pharmaceuticals. In these two areas, innovations are often perceived to be 

complex or risky, and mainstream imitators refuse to be on the “bleeding edge,” unlike opinion 

leaders and lead users. The third area is that of entertainment and mass culture products like 

gaming software, music, books and movies, where the distinction between aficionados and the 

casual mainstream audience can loom large.18 Teen marketing is the fourth area where the 

distinction between influentials and imitators may be critical in the new product diffusion 

                                                 
18 Explicitly allowing for influentials and imitators may be especially useful for products carried by characters, 
writers, actors or directors who already have a small following among aficionados but have not yet broken through 
to the mainstream. In such cases, one would expect the former to adopt according an independent process and the 
latter to adopt only through contagion, if at all. This might result in a temporary dip. Movies starring Christina Ricci 
and movies directed by Ang Lee exhibit this pattern. Early in her career, Ricci played in several independent movies 
that won critical acclaim and earned her the label of “Indie Queen”. These early movies exhibited the bell curve 
typical of very successful “sleepers” (The Ice Storm-1997; The Opposite of Sex-1998; Buffalo 66-1998). Then 
followed a small movie exhibiting a dip (Desert Blue-1998), while her recent movies are more standard Hollywood 
fare exhibiting the standard monotonic, exponential decline (e.g., The Man Who Cried-2001). The same pattern is 
observed for movies directed by Ang Lee: bell-shaped for The Ice Storm-1997, a temporary dip for Ride with the 
Devil-1999, and monotonic decline for his more recent Hollywood production The Hulk-2003. 
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process. For several years, P&G has been operating Tremor as a mechanism to connect with 

highly involved and influential teens, foster adoption among them, and through them reach out to 

the larger teen population. Categories in which Tremor and similar services have been used 

include not only fashion oriented apparel and entertainment, but also more mundane fast-moving 

consumer goods like beauty aids and food. The fifth area of particular potential consists of 

situations where a segment of enthusiasts has pent-up demand. For instance, when internet 

access providers started operating in France in 1996, a rather large number of people adopted 

their services. New adoptions dipped in 1997, only to increase again from 1998 onwards. The 

deviation from the standard bell shape was not the low number in 1997 but the high initial 

number in 1996, when many university users who had been accessing the internet exclusively 

through the university RENATER network were finally able to start using the internet at home as 

well (Fornerino 2003). In case the enthusiasts can place advance orders that the marketing 

analyst can observe (e.g., Moe and Fader 2002), it may be useful to explicitly allow for a 

difference between the start time of the diffusion process of the two segments. 

6.1. Implications for practice 

The first two of our results have clear managerial implications. Since dips in the adoption 

curve can stem from the mere presence of influentials and imitators, it need not always be 

necessary for firms to change their product to gain traction among later adopters and the 

adoption curve to swing up again. In contrast to what Moore (1991) claims, launching a new 

version to appeal to prospects who have not adopted yet need not always be necessary, let alone 

optimal, to get out of the dip. Of course, when the dip results not from a social chasm between 

segments (very low w) but from a difference in what constitutes an acceptable product offering, 

then changing the product will be necessary to gain traction in the second segment. 
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We have also shown that the proportion of adoptions stemming from influentials need not 

decrease monotonically; it can also first decline and then rise again. Hence, while it may make 

sense for firms to shift the focus of their marketing efforts from independents to imitators shortly 

after launch as shown by Mahajan and Muller (1998) using a two-period model, they may want 

to start increasing their resource allocation to independent decision makers again later in the 

process. Managers who confuse the distinction between influentials and imitators with that 

between early and late adopters, and ignore our results and others’ empirical evidence that the 

bulk of the late adoptions may stem from people not subject to social contagion (e.g., Becker 

1970; Coleman et al. 1966), may end up wasting money by poor targeting.  

Both these prescriptive implications assume the existence of influentials and imitators. Of 

course, thoughtful managers will want to check these assumptions against data from their own 

markets to assess to what extent they should trust these implications. Standard aggregate-level 

data and models can be quite misleading for identifying causal mechanism affecting new product 

diffusion (e.g., Bemmaor 1994; Van den Bulte and Stremersch 2004). Managers and market 

researchers must realize that disaggregate data are necessary to gain a better understanding of 

whether and how social contagion drives the diffusion of their products (e.g., Burt 1987; Van den 

Bulte and Lilien 2001). 

Our work also has important implications for how managers should develop more effective 

network marketing efforts. Several firms in the pharmaceutical industry, longtime leaders in 

applying marketing analytics, are now conducting research in which they ask physicians to name 

the opinion leaders in their social network. Typically, firms use this information to guide their 

sales reps to the more central physicians. In terms of our model, they are allocating their 

resources to make F1(t) grow faster, in the hope that this will get F2(t) growing faster as well 
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through the social multiplier effect captured by wq2. This makes sense, but should be 

complemented with efforts to increase the multiplier, especially the weight factor w. Rather than 

focusing only on identifying and converting influentials, firms should also identify ways to 

increase their impact (e.g., Valente et al. 2003). 

The limited value of aggregate-level data to detect contagion effects does not mean that 

nothing can be learned from them. Following the lead of studies like that of Hahn et al. (1994), 

firms could analyze the sales evolution of multiple products and look for systematic differences 

in parameters like θ, w and q2 that can be related to product or market characteristics. This, in 

turn, may help firms develop a better understanding of why product sales evolve the way they do 

and might even result in better forecasting models. Such analysis should be useful in all five 

areas of application identified earlier. From a data availability point of view, it should be 

particularly appealing to firms in the book, music, and film industries who launch many products 

each year, and to consulting and research firms with many clients in pharmaceuticals or in high-

tech industries. 

6.2. Additional implications for education and research 

We have shown that some ideas in mathematical diffusion modeling that have become part of 

the standard marketing curriculum through influential papers and books (Bass 1969; Rogers 

2003), are wrong and have misleading marketing implications. We hope our work will help 

redress this situation in both education and research training.  

Several of the implications for practice we presented above have clear research opportunities 

attached to them. Another important extension of our work would be to incorporate control 

variables, including marketing efforts. This may not only be useful for empirical research (e.g., 

to what extent are dips simply caused by exogenous demand shocks?), but may also enable one 
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to study more rigorously the decision to target independents versus imitators. Even a simplified 

three-period model might be helpful in studying under what conditions it is profit maximizing to 

change one’s targeting from independents to imitators and, possibly, to independents again 

(Esteban-Bravo and Lehmann 2005). Like the models we presented, this extension would allow 

one to better understand current arguments and findings, to formalize richer theoretical 

arguments, and perhaps even to operationalize them into estimable models that help bridge the 

gap between theory and data. 
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As w → 0, this expression for F2(t) reduces to the closed-form solution for the MIM. 
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where Γ(η,k) is the “upper” incomplete gamma function: Γ(η,k) = dvev v
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Transforming z back to F2, we get: 
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As w → 0, this expression for F2(t) reduces to the closed-form solution for the MIM. 

 


