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Choice Interactions and Business Strategy

Abstract:

Choice settings are strategic to the extent that they entail cross-sectional or intertemporal linkages. These
same factors may impose daunting demands on decision makers. We develop a graph-theoretic
generalization of the NK model of Kaufman (1993) in order to model the way in which policy choices
may be more or less strategic. We use this structure to examine, through simulation, how fully articulated
a strategy or set of policy choices must be to achieve a high level of performance, and how feasible it is to
offset past strategic mistakes through tactical adjustments (instead of alignment). Our analysis highlights
the role of asymmetry in the interaction of strategic choices and in particular the degree to which choices

vary in terms of being influential, dependent, or autonomous from other choices.



Choice Interactions and Business Strategy

1. Introduction

The interactions among choices are essential to firm strategy. In the absence of cross-functional
interactions, for example, choices could be made from a functional perspective, shrinking the scope for
strategy to have distinctive content as a field, beyond that offered by individual functions. And without
intertemporal interactions, choices could be made myopically, without requiring any sort of deep look
into the future (a point first stressed by Arrow 1964).

Strategists have responded by exploring the interactions among firms’ choices both synchronically
and diachronically, to use the conventional historical categories. Synchronically, there has been renewed
interest in the multidimensionality of and complex interactions among a firm’s policy choices at a point in
time (e.g., Porter 1996; Levinthal 1997; Rivkin 2000). And diachronically, a number of authors have
explored how earlier choices may influence later ones (e.g., Ghemawat 1991; Teece, Pisano, and Shuen
1997). But while these extensions are essential, dealing with them does present some difficulties for
strategy-making. In particular, both synchronic and diachronic interactions induce complexity in the sense
of introducing interdependency among choices (Simon 1962). This property, in turn, makes it hard to
imagine boundedly-rational actors prespecifying all relevant policy choices, let alone rules governing
their optimal evolution.

For that reason, we focus on a different behavioral mechanism in which boundedly rational agents—
companies that are profit-seeking but not profit-maximizing—first precommit to particular policy choices
for a subset of the possible dimensions of choice (“strategy setting”) and then follow up with (local)
search and adaptation (“tactical alignment”) over the fitness landscape defined by the payoffs associated
with different combinations of policy choices (Gavetti and Levinthal 2000; Siggelkow 2002a).

The principal question of interest to us here is how well this mechanism should be expected to work

in dealing with multiple, interacting dimensions of choice. There are two obvious types of contingencies



to be explored in this context: those in which initial strategic precommitments align with the choices that
turn out to be optimal ex post and those in which the two are misaligned. We use agent-based simulations
to analyze both types of contingencies. The analysis of the alignment contingency focuses synchronically
on the completeness with which strategies must correctly be prespecified to achieve satisfactory
performance and, in particular, the implications of correctly prespecifying policy choices that are more
strategic versus merely a greater number of policy choices. The analysis of the misalignment contingency
looks diachronically at the dark side of precommitment: the performance implications of irreversible
mistakes in past choices.

Our results are grounded in a structure for representing choice interactions that permits systematic
exploration of the performance impact of interaction-related attributes of choices—particularly influence
versus dependence and centrality versus independence—as opposed to choices’ standalone attributes.
This structure and its links to prior work in strategy and other fields are discussed next, before the model

employed in this paper is fully presented and analyzed.

2. From Activity Systems to Adjacency Matrixes

The strategy field has long emphasized the importance of understanding the interactions or
interdependence among firms’ policy choices. Early work such as Andrews (1971) took a primarily
synchronic perspective by focusing on cross-functional interactions; diachronically, this work did
acknowledge the existence of resources or, more broadly, strengths and weaknesses, with long-lasting
effects but simplified matters by treating them as fixed for purposes of strategic planning. Porter (1996)
provided a much more articulated sense of synchronic choice interactions with “activity systems” that
highlighted the linkages among rather detailed operating choices as well as their interactions with—and
the interdependence among—a small number of higher-order choices about how a firm positions itself
relative to the competition: see Figure 1 for an example, based on the case of Southwest Airlines.

Attention to diachronic interactions is more recent but has already afforded some insights into how earlier



choices may affect later ones (e.g., Ghemawat 1991 on irreversibility and commitment, and Teece,
Pisano, and Shuen 1997 on path-dependence).

Grappling with interactions among choices poses challenges for decision makers because of what
Bellman (1957), one of the progenitors of dynamic programming, described as “the curse of
dimensionality.” The difficulties are twofold. Even within a purely synchronic or cross-sectional frame,
rich interactions among a large number of choices imply, given the combinatorial possibilities, the
nonexistence of a general, step-by-step algorithm that can locate the best set of choices in a “reasonable”
period of time (i.e., a polynomial function of the number of variables) (Lewis 1985; Rivkin 1997). And
from an diachronic perspective, such systems generally do not lend themselves to “pushing forward” in
time from multi-dimensional histories to identify an optimal path on the basis of a lower-dimension set of
choice variables, even if those are the only variables of direct interest (Sussman 1975).

How can firms cope with such complexity? Here, the literature on strategy-making is less explicit but
often seems to assume that strategies are specified ex ante, on the basis of a priori theorizing. And here,
we break with orthodoxy and, following Simon’s (1955) arguments regarding bounded rationality, treat
complexity as an inexpungible constraint. The boundedly-rational behavioral mechanism that we posit—a
firm partially precommitting to its choices, and then engaging in a process of local search and
adaptation—will be specified more precisely in the next section. While bounded rationality is often
viewed from the lens of the degree of actor’s cognitive capabilities, whether this constraint binds, and its
effects if it does, depend on the decision contexts in which actors find themselves (Ethiraj and Levinthal
2005). Different structures of interaction pose different degrees of challenge for boundedly rational
strategy-making.

One way forward is to recognize, as emphasized in Simon’s early work on the architecture of
complex systems as well as more recent writings on modularity (Baldwin and Clark 2000), that even in
complex design problems, not all elements of the design (i.e., strategy) problem affect one another, nor
are the interactions that do exist likely to be symmetric or randomly distributed. The possibility that there

may be some underlying structure to the interactions of strategy choices provides some hope that the



identification of a subset of critical strategy choices may be sufficient to orient the firm towards an
effective position on the competitive landscape. What constitutes a “critical” choice in this context is a
function of the interaction structure among the choices. If, as Simon (1962) suggests, design problems
tend to have some inherent hierarchy, then it might be reasonable to assume that choices higher up in the
hierarchy of policy choices, that is choices that influence the appropriate resolution of other choices,
would be particularly important to specify correctly.

More broadly, the articulation of the underlying structure of such choices might prove a useful
substrate to theorizing about strategy development. Siggelkow’s (2002a) work on the historical
development of the activity system(s) for Vanguard’s mutual funds can be used to illustrate the
dependence of effective strategy-making on the underlying structure of choices. One developmental
process considered by Siggelkow is “patch-to-patch.” The image is that one sub-system of a firm’s
strategy, such as its product positioning, becomes fully characterized and then, in a sequential manner,
other “sub-systems” are characterized. An alternate process is what Siggelkow terms from “thick-to-thin.”
In this dynamic, broad, higher-order policies are first identified and then subsequently lower-order, more
refined policies are specified. Building on Simon (1962), we suggest that the former process would be
effective to the extent that the interdependencies among choices are nearly decomposable. Only in such a
setting can one intelligently specify the elements of one subsystem in isolation. The second process,
“thick-to-thin” would seem to be effective to the extent that there is some inherent hierarchy in the set of
choices, that the identification of a few higher-order choices can broadly situate the firm in the
competitive landscape and effectively seed the subsequent process of local search.

A general structure within which to explore the impact of varying patterns of interaction is suggested
by the observation that the activity system in Figure 1 bears some resemblance to a mathematical graph.
A mathematical graph can be summarized in terms of its adjacency matrix, which specifies how different
choices—the vertices in the graph—are linked by the lines in the graph (see Figure 2 for examples). In
such a matrix, choice variable i’s effect on other variables is represented by the patterns of 0’s and 1’s in

column i, with a value of 1 indicating that the payoff associated with the variable in the row being



considered is dependent on variable i, and a value of 0 denoting independence. A choice is influential to
the extent that the column under that policy is populated with 1’s, indicating that the value of other
policies depends on this choice. Conversely, a policy is dependent upon other choices to the extent that
the row corresponding to that policy is populated with 1’s in the adjacency matrix." A policy is relatively
autonomous to the extent that neither the column nor row associated with this policy is populated with
1’s. Also, note that the principal diagonal of an adjacency matrix always consists of 1’s.

However, while there is a resemblance between activity systems of the sort depicted in Figure 1 and
adjacency matrices populated with 0’s and 1’s, it stops well short of isomorphism. There are three
principal differences that are worth emphasizing. First, our adjacency matrix approach does not
prespecify a distinction between higher-order and lower-order strategic choices (the darker versus lighter
circles in Figure 1): the focus here is on identifying the choices that are strategic in terms of their
interactions with other choices instead of presorting them independently of that structure. Second, the
adjacency matrix approach allows for a distinction that the activity system approach, as conventionally
articulated, does not: it unbundles linkages by directionality (influence versus dependence). Third, the
activity systems approach tends to assume that all strategic choices are freely variable in each period
whereas the adjacency matrix approach accommodates more interesting diachronicity by allowing for
temporal precedence. The last two enhancements associated are worth discussing in more detail.

The enhancement of allowing for directionality in linkages is necessary only if adjacency matrixes are
asymmetric around the main diagonal, i.e., if influence/dependence is not always reciprocal. Clearly,
temporal precedence can engender such asymmetries, a possibility that we address below. What is less
obvious is whether, within a purely synchronic frame, choice “A” can affect the payoff consequences of a
second policy choice “B” without symmetrical interdependence being present. Guidance in this regard is
offered by the literature on product design, which has developed design structure matrixes that are

formally equivalent to the adjacency matrixes considered here. For instance, MacCormack, Rusnak, and

" In addition to such direct effects, variables may, of course, be indirectly related through other variables.



Baldwin (2004) offer a clear illustration of an asymmetric relationship in the context of computer
programming.> More generally, analyses of interactions in actual technical systems reveal strong
asymmetries, such as Baldwin and Clark’s (2000) analyses of computer systems or Sharman and
Yassine’s (2004) work on gas turbines.’

We therefore allow for directionality in linkages by distinguishing between influence and dependence
as well as considering the overall intensity of a choice’s linkages to other choices. It is worth adding that
these are all well-established notions in the design literature. That literature typically uses the term
“visibility” rather than influence, where an element is “visible” to another if changes in its value affect the
performance of the other element (Sharman and Yassine 2004). However, visibility is defined in exactly
the same manner in which we define influence: the number of 1’s in the column associated with that
policy choice in the design matrix. Furthermore, the term “dependence” is used in this literature exactly as
employed here: the number of 1’s in the row associated with that policy choice in the design matrix. The
literature also notes that systems may vary in their level of overall connectivity or interdependence.

The final enhancement associated with the adjacency matrix approach, the ability to allow for the
sequencing of choices, is also evident in the literature on design structure matrixes, which sometimes uses
them to map process flows. For example, choices that must be made in a strictly linear sequence can be
represented as a diagonal of 1s just below the main diagonal. In the current analysis, we look at
diachronic interactions within the simplified context of a two-stage choice process, with a focus on the
consequences of correct versus incorrect specifications in stage one given local search and adaptation in

stage two.

* Their example concerns computer programming and function calls, i.e., instructions that require specific tasks to
be executed by programs. When the function that is called is not contained within the source program (or sub-
routine), “this creates a dependency between the two sources files [programs] in a specific (italics in the original)
direction. For example, if Sourcefilel calls FunctionA, which is located in Sourcefile2, we note that Sourcefilel
depends on Sourcefile2. . . . Note that this dependency does not imply that Sourcefile2 depends upon Sourcefilel.”
(MacCormack, Rusnak, and Baldwin 2004: 9).

? Rivkin and Siggelkow (forthcoming) make a similar argument for the presence of asymmetric off-diagonal
elements of an adjacency matrix in their examination of the structure of interaction among a firm’s policy choices.



Despite this last simplification, the structure of choices set up and analyzed in this paper admits a
wide range of interactions. As Sharman and Yassine (2004) note, we may observe a number of
qualitatively different patterns in a matrix structure depending on the degree to which visibility
(influence) is symmetric and the degree of connectivity (interdependence) in the system. Figures 2a-2d
span a wide range of patterns of interactions. Figure 2a is a relatively hierarchical matrix in that elements
(policies) that are very influential tend not to depend on other elements, whereas Figure 2b is rather more
symmetric in the sense that influential elements tend to be highly dependent as well. Systems may also
vary in the degree to which elements are interdependent. Figures 2¢ and 2d display systems that are
relatively hierarchical and relatively symmetric respectively, but with much lower levels of
interdependence than in Figures 2a and 2b. This paper focuses on the implications of these attributes of

choice interactions for the possibility and effectiveness of strategy-making.

3. Modeling Interactions

The challenge of modeling interdependent choices has recently received considerable attention in the
economics and management literatures. One approach has been to focus on a very special choice
structure, involving supermodularity, in which choices along any two dimensions are pair wise
complementary for all values of the choice variables involved, and for all values of other choice variables.
Topkis (1978 and 1995) and Milgrom and Roberts (1990 and 1995) have used the resulting lattice models
to show that these are the weakest conditions under which it is possible to obtain monotone comparative
static predictions linking shifts in optimal choices concerning sets of variables to changes in underlying
parameters. How weak these conditions are in absolute terms is another matter: tradeoffs or substitution
effects are ruled out, as are reversals between substitution and complementarity as the values of relevant
variables change and, consequently, limitations are placed on the number of “best ways to compete”
(local peaks on the fitness landscape, as elaborated below). If one believes, as some strategists (e.g.,

Porter 1996) do, that the interplay between complementarities and trade-offs across multiple activities is



critical to the possibility of “many best ways to compete,” then allowing only global complementarities
seems very constricting.

The other response to the problem of multiple, linked choices that has commanded attention recently
has been to build on the NK-simulation approach pioneered by Kauffman (1993) in evolutionary biology
(cf., Levinthal 1997 and Rivkin 2000). Kauffman, drawing on Wright’s (1931) notion of a fitness
landscape, developed this framework to explore the emergence of order among biological organisms. The
model has two basic parameters, N, the total number of policy choices, and K (< N), the number of policy
choices that each choice depends upon. More specifically, each of the choices is assumed to be binary,
and choice-by-choice contributions to fitness levels are drawn randomly from a uniform distribution over
[0,1] for each of the 2" distinct payoff-relevant combinations of which a choice can be part. Total fitness
is just the average of the fitness contribution of each of the N individual fitness levels. Note that with K
equal to its minimum value of 0, the fitness landscape is smooth and single-peaked: changes in the setting
of one choice variable do not affect the fitness contributions of the remaining N-1 choice variables. At the
other extreme, with K equal to N-1, a change in a single attribute of the organization changes the fitness
contribution of all its attributes, resulting in many local peaks rather than just one, with each peak
associated with a set of policy choices that have some internal consistency. No local peak can be
improved on by perturbing a single policy choice, but local peaks may vary considerably in their
associated fitness levels.

The choice structure underlying the NK simulation approach generalizes Milgrom and Roberts’
lattice-theoretic approach based on “complementarities” in two key respects. First, it avoids imposing a
specific structure on the linkages among choices. Second, it allows the richness of such linkages to vary
across situations (through the K parameter). It embodies a number of other attractions as well, most of
which we will discuss and retain below. But for our present purposes, it also has one glaring defect: all
choices are assumed to be equally important. This rules out, for example, asymmetries of the sort evident
in the distinction between light and dark circles in Figure 1. To remedy that defect, we need more degrees

of freedom than are afforded by a single interactivity parameter, K. This is precisely what adjacency



matrixes of the sort discussed above afford: the ability to vary in the degree to which choices influence or
are influenced by others.

For concreteness, reconsider the two examples cited earlier. Vanguard has been characterized as
having been founded on the basis of a highly distinctive choice of organizational structure from which
other choices naturally flowed (Siggelkow, 2002a). The Vanguard Group was incorporated as a mutual
holding company in which the shareholders of the underlying funds would own the managing fund
complex.® As a true mutual, administrative services shifted from being a source of profits for the fund
manager to being a “cost center” shared by the underlying mutual funds and, correspondingly, provided a
focus on cost reduction not shared by other fund complexes. Resulting choices, such as the focus on index
funds, internalizing much of the asset management function, and the shift to direct distribution of funds to
shareholders, as opposed to the then conventional format of broker-dealers, followed quite naturally from
this prior choice of organizational form.

Thus, the set of interrelationships among policy choices in the case of Vanguard appears to have a
hierarchical quality. The most stylized representation of this sense of hierarchy would be to consider the
adjacency matrix corresponding to the Vanguard characterization as containing 1’s in one column
(corresponding to the choice of organizing as a “true” mutual) as well as in the principal diagonal, with
0’s elsewhere—in graph-theoretic terms, a star. A star graph is an extreme example of the much more
general class of hierarchical choice structures. In graph-theoretic terms, hierarchies are best thought of as
directed (or at least rooted) trees, with interdependencies (i.e., the 1’s) populating one side of the principal
diagonal. Figure 2a actually depicts a pure hierarchical form with 1’s as all the entries to the left of the
principal diagonal. Choice 1 is hierarchically the most important, choice 2 the second most important, and
so on; such a structure lets us take a finer-grained look at the effects of variations in the degree of

hierarchical importance than a star structure would permit.

* The term mutual fund refers to the joint holding of investment assets. However, with the exception of Vanguard,
all “mutual funds” are structured such that shareholders in the fund have no ownership of the entity that manages
and administrates the investment assets.
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The Southwest activity system in Figure 1, in contrast, does not lend itself to representation in
hierarchical terms. Instead, the policy choices captured by the circles vary in their degree of centrality,
i.e., the number of other choices on which they are mutually dependent. Thus, “point to point routes,”
with five links, is more central to Southwest’s strategy than, say, the lack of seat assignments with one
such link. In addition, the purely cross-sectional nature of the representation suggests that this notion of
centrality is responsive to the potential inferential problem that all we might be able to observe are the
linkages between choices, not the direction of influence, i.e., that in observational terms, we might have to
work with undirected graphs—or in adjacency matrix terms, with matrices that are symmetric around the
principal diagonal. The particular form of centrality depicted in Figure 2b embodies a structure and a
labeling scheme that has 1’s as all the entries to the left of the inferior diagonal (but distributed
symmetrically to the left and the right of the principal diagonal). Thus, choice 1, with links to 9 other
choices, is the most central, choice 2 the second most central, and so on.

To explore systematically a range of possible adjacency matrices, we specify the following stochastic
process for generating them. For each policy choice, we specify a probability p;"' that policy i influences
other policy choices and a probability p; that the payoff to this policy is in turn dependent on other
policies. Thus, the likelihood of a linkage such that choice i influences policy choice j is p;" pjc. Or, to
reparametrize these variables, p;" and p°, in a useful way, let r; = p;" / (p"' + p;°) represent the relative
tendency towards influence as opposed to dependency, and let p; = (pi* + pi°) represent the likelihood of
some form of interdependence as opposed to independence.’ Thus, by varying r; from zero to one we
specify the relative degree to which a policy is dependent or influential and by varying p; from zero to one
we vary the policy’s degree of interdependence.

Specifically, we examine two sorts of structures of interactions among choices. One structure
examines the effect of heterogeneity among choices with respect to the hierarchy of interactions, while

the other examines the heterogeneity among choices with respect to the centrality of interactions. To

> Using this parameterization, p;" = pir; and p;© = p; (1 —17).
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examine the first sort of structure, we set p; equal to a constant value for all choices (with 0.5 being the
base case for this fixed value) and vary r; from 1 for the first policy to 1/N for the Nth policy in
increments of 1/N in order to explore structures in which policy choices vary in the degree to which they
are influential or dependent. Thus, the first decision would have a value of r of 1 and a value of p ata
fixed level py (again, with po= 0.5 in the base-case), the second policy a value of r of (1 — 1/N) and a
value of p of ppand so on. Similarly, variation in centrality is examined by setting r to a fixed value of ry
(again, with ro = 0.5 in the base-case) and varying the value of p from 1 to 1/N in increments of 1/N.
Therefore, when examining heterogeneity in centrality, the first policy has a value of p of 1 and a value of
r of 1y (again, with ry= 0.5 in the base-case), the second policy having a value of p of (1 — 1/N) and a value
of r of roand so on.°

For all interaction structures studied, an organization’s policy choices are represented by a vector of
length N where each element of the vector can take on a value of 0 or 1 (not to be confused with the 0’s
and 1’s that are used to denote the absence or presence of linkages between every pair of policy
elements). The overall fitness landscape will then consist of 2" possible policy choices, with the overall
behavior of the organization characterized by a vector {xy, X, . . ., X}, Where each x; takes on the value
of 0 or 1.” If the contribution of a given element, x;, of the policy vector to the overall payoff is influenced
by K; other elements—in ways that vary across the three structures we will analyze—then it can be

represented as f(Xi Xii, Xp, . . ., Xix,). Therefore, each element’s payoff contribution can take on 2Kt

different values, depending on the value of the attribute itself (either 0 or 1) and the value of the K; other
elements by which it is influenced (with each of these K; values also taking on a value of 0 or 1).

Specifically, we follow prior researchers and assign a random number drawn from the uniform

% To provide some comparison with the more familiar analysis of fitness landscapes with a fixed K value for all
policy values, the baseline parameter settings here generate adjacency matrices with, on average, 14 non-diagonal
1’s which implies, given a value of N of 15, a realized average K value of approximately 1. There is a slight
difference between the hierarchical and centrality structure though the magnitude of this difference is quite small
with the centrality structure having, on average 1.2 more non-diagonal values out of the 225 entries in the 15x15
adjacency matrix.
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distribution from 0 to 1 to each possible f(xj| xij, Xip, - . - , XKi) combination, with the overall fitness value
then being defined as -1 N f(Xi] Xi1, Xiz, - - -, Xik,) / N.

A number of additional assumptions, based on prior applications, that are built into this specification
should also be mentioned. First of all, there is the emphasis on choice under uncertainty. In addition to its
arguable descriptive realism, initial uncertainty helps explain why an organization launched over a fitness
landscape may not instantly alight on the globally optimal policy vector. Second, there is the assumption
that randomness takes the form of a uniform distribution. While it could be argued that this distribution is
too diffuse, we retain this assumption to provide at least some basis for numerical comparability with
prior work; furthermore, prior work by Weinberger (1991) and others suggests that the structure of the
fitness landscape is not sensitive to the probability distribution employed. Third, there is the equal
weighting of different choices in terms of their direct contribution (potential) to overall fitness. Solow ef
al. (1999) explore the implications of differentially weighting the contribution of different policy
variables to overall performance.® While asymmetries in weights are clearly important, our focus here is
on asymmetries in the structure of interactions and their implications for effective strategy formulation.
Finally, note that while the analysis highlights the effects of linkages among the organization’s policy
choices, it does not address linkages across firms. In particular, one could imagine spatial competition (or
cooperation) among firms so that the fact that one or more firms occupy a particular point on the policy
landscape changes the payoff to other firms’ occupying that region (see, for example, Lenox et al. 2005).
Clearly, such effects exist and are important. But, for simplicity, we do not explore them in the present
analysis.

We also assume that N equals 15—a level of multidimensionality that, based on a standard result in

graph theory, is sufficient to generate more than 10" distinct graphs. The results that we report are

7 The model can be extended to an arbitrary finite number of possible values of an attribute, but the qualitative
properties of the model are robust to such a generalization (Kauffman 1989).

¥ The focus of their work is to demonstrate that sufficiently extreme weighting differences, in particular weighting
the contribution of one policy by 1-¢ and the other N-1 variables by ¢ for sufficiently small values of €, can allow a
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averaged over 10,000 landscapes. The repetition is meant to allow for the averaging out of two kinds of
randomness. The first reflects the range of possible adjacency matrices that may result for a given set of
values of p and r; the second results from the seeding of a given performance landscape. To address the
former source of randomness, we generate 100 adjacency matrices for each vector of p and r values. Each
of these 100 landscapes will have an independently drawn adjacency matrix, although based on the same
p and r values. In addition, given the realized adjacency matrix, the landscapes will have a distinct
seeding of fitness values. To address the latter sort of randomness, we generate 100 distinct fitness
landscapes for each of these 100 adjacency matrices. In analyzing our results, we normalize fitness levels,
in a manner now standard in analyses of such structures (cf., Rivkin 2000; Rivkin and Siggelkow 2003),
to control for the fact that the magnitude of the global peak will vary from landscape to landscape, even if
the landscapes share the same structural properties. As a result, the highest possible performance is
specific to a particular fitness landscape and therefore, what is “good” performance must be evaluated
relative to the value of the global peak in that particular landscape. Thus, the fitness values provided in
our results are the raw fitness value divided by the fitness value at the global peak for the particular
fitness landscape in which the firm is operating. These normalized fitness levels, averaged over the

10,000 runs, are what are actually reported in the next section.

4. Simulation Results

We explore the emergence of strategic positions from two perspectives, both of which involve
strategic choices followed by local search over what might be described as tactical choices. We first look
at the possibility, or demands, of a priori specification of strategies: can higher-order or strategic
guidance along a few dimensions followed by tactical adjustment and alignment of the remaining
dimensions through local search be expected to lead to high levels of performance? Second, we consider

diachronic or temporal linkages in conjunction with synchronic interactions. In particular, we consider the

process of local search to reach the global optimum even under conditions of high interaction (K) across policy
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impact of legacy misspecification of policy variables that are strategic in the sense of being irreversible:
what are the residual costs of different types of initial misspecified choices, after local search and tactical

adjustment aimed at mitigating these “mistakes” or unfortunate legacies from a prior competitive setting?

Strategic Guidance and Tactical Alignment

How might a complex policy system such as the cross-sectional one depicted in Figure 1 for
Southwest Airlines arise? Broadly speaking, there are two possibilities. One is through ex ante design of a
coherent and fully articulated activity system. Another possibility is via a process of search and
adjustment on the fitness landscape defined by the payoff associated with different vectors of policy
choices. In particular, a process of local search will eventually identify an internally coherent set of policy
choices; that is, a set of choices from which any incremental one-policy-at-a-time change would be
dysfunctional, or what has been called a local peak in the fitness landscape (Kauffman 1993). However,
local peaks come without warranties as to their global or absolute desirability, so there is no assurance
that local search processes will, on their own, lead to satisfactory performance.

The actual evolution of successful strategies probably involves elements of both ex ante design and ex
post adjustment. Full articulation a priori of a strategic position with dimensionality as high as in Figure
1 seems daunting; at the same time, it seems unlikely to be purely emergent. A plausible picture of
managerial processes seems to be that while there is some top-down prespecification of both some broad
principles and some particular policy choices, these represent starting points of processes aimed at
improving firms’ positions over time (Gavetti and Levinthal 2000; Siggelkow, 2002a). This
representation also has the attractive feature of embodying elements of both the conscious choice of
strategies, in the spirit of the “content” style of strategy research, and of the emergence of strategic

positions that is central to “process” discussions of strategy formulation (Mintzberg 1978; Burgelman

1994).

choices.
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Our use of this representation is motivated by the idea that the effectiveness of strategic planning may
be inversely related to the dimensionality required of a strategy to ensure the achievement of a reasonably
consistent set of policies. If strategy must be defined at a very detailed operational level to achieve
consistency (e.g., if it must spell out the choices corresponding to all the circles in Figure 1), then the
requirements for strategic planning escalate dramatically. In contrast, if a few higher-level choices make
subsequent lower-level choices self-evident (e.g., if it suffices to spell out the choices corresponding to
just the dark circles in Figure 1, followed by a process of local search), then the requirements for strategic
planning remain relatively modest.

Tables 1 and 2 explore this issue for the hierarchical and centrality structures respectively, in the
following manner. A certain number of policy choices (“degree of match™), selected in decreasing order
of “strategic” importance (with reference to the hierarchical and centrality structures), are set to equal
their value at the global optimum, and the initial values of the remaining policy choices are specified at
random. In this sense, the analysis provides an optimistic account of the possible power of a priori
strategy setting in that the explicit strategy choices are assumed to be correct, but the question remains as
to how deep and fine-grained must strategy-making be for such a priori choices to ultimately result in
desirable overall policy configurations. These remaining policies are then modified by a process of local
search. Local search (March and Simon 1958; Cyert and March 1963) involves the comparison of an
existing policy choice with adjacent, or neighboring choices. This process is operationalized here as
involving the comparison of the current policy vector with all the other policy vectors that differ from the
current vector in terms of just one choice element. If a superior alternative is identified in the immediate
neighborhood of the existing policy array, it is adopted.” In subsequent periods, more local search follows
until no further replacement that immediately enhances fitness values can be found. This dynamic leads,

inexorably, to local peaks in the fitness landscape (Levinthal 1997). Thus, the choice variables that are

’ More precisely, local alternatives are sampled at random until a superior (relative to the current policy) alternative
is identified or the entire set of neighboring points is exhausted. An alternative specification would be to impose a
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correctly preset influence the initial seeding of the organization in the fitness landscape. From this starting
point, the organization then identifies a local peak within whose “basin of attraction” it has fallen.

With a preset degree of match of 1, only the first, most strategic, variable is set equal to the global
optimum. As more variables are matched with their settings at the global optimum, fitness rises steadily
according to both tables. Not surprisingly, presetting more policy choices correctly monotonically
enhances the expected performance of the policy configuration that the firm ultimately identifies.
However, it is striking how extensive such a specification must be in order to reliably obtain the global
optimum. As a further test of the importance of identifying relatively strategic policies for strategy-
making, we also consider a random baseline in which the matrix of interactions is the same (hierarchical
or centrality) but the policies that are correctly pre-specified are randomly chosen. We observe two sorts
of resulting performance differences in the two tables. Specifying more strategic, rather than random,
policy choices leads to a superior initial value.'’ This superior initial “seeding” of the organization in the
performance landscape, in turn, leads the subsequent process of tactical adjustment of policy choices to
result in the identification of a superior local peak as revealed by the comparison in final fitness value in
the two regimes. The gap between performance under such a random choice of polices to prespecify
correctly and performance that results from the “ordered” specification of correct policy choices indicates
the power of presetting more strategic variables. In contrast, the gap between the realized fitness level and
the (normalized) value of 1, indicates the loss from not fully articulating the optimal policy array. This
analysis implies, most broadly, that a priori strategy-making matters. The more policies that can be
specified correctly a priori, the higher the level of fitness the organization is able to obtain subsequent to
its process of local search. Further, specifying more strategic policies correctly has a statistically

significant effect on the resulting performance. However, a high level of specificity is necessary to obtain

“greedy” local search in which all local alternatives are evaluated and the best among these, if it is superior to the
status quo, is adopted.

1 Statistical significance is evaluated on the basis of a t-test between the resulting fitness value under the “ordered”
versus random specification of correct policy choices.
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the highest possible fitness levels or configurations close to the global optimum: in rugged landscapes,
there are just too many positive-gradient paths that lead to local peaks other than the global one.

While the general pattern of results described above holds for both the hierarchical and centrality
structure there are some differences, differences that are amplified when we consider the impact of
historical constraints on policy choices below. In particular, the results regarding the final fitness value
achieved under the ordered versus random specification of correct policy choices are quite similar for
hierarchical and centrality structures. However, for the centrality structure, the initial value of fitness does
not differ significantly between the random and ordered case until four policies are correctly specified.
Thus, correctly presetting variables does, under the centrality interaction structure, seed the firm in a more
attractive basin of attraction—that is, local tactical adjustments from this starting point lead on average to
a superior local peak for all values of the number of policies set correctly; however, the direct benefit, in
terms of initial fitness value, of presetting variables that are more strategic correctly is not as powerful
within a centrality interaction structure as within a hierarchical interaction structure. In our subsequent
analysis, we observe how tactical adjustments are able to compensate for potentially misspecified highly
central policy choices whereas such adjustments are not possible for policies which have low levels of
interactions with other policy choices—a property that helps resolve this difference between the results of

Table 1 and Table 2.

Strategic Mistakes and Tactical Mitigation

Success is not the only possible outcome to strategic prespecifications: they may also turn out to be
mistakes. Alternatively, even if a policy choice made sense at one point in time, it may no longer be
suited to an environment that has shifted and yet, if commitment-intensive, will be hard to reverse. The
analysis in this subsection focuses on the downside rather than the upside of the effect of initial
positioning in policy space. Specifically, it models the commitment-intensity or irreversibility of
choices—perhaps their most basic temporal quality—by focusing on totally irreversible “mistakes” in the

sense of policy variables whose values are preset to mismatch rather than match their values at the global
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optimum. The objective is to explore how the underlying structure of interactions among choices affects
the residual costs of such mistakes, after local search aimed at tactical adjustment through both mitigation
of these mistakes and efforts to align the full system of policy choices.

Table 3 summarizes the normalized fitness level achievable when each of the 15 possible policy
variables is misspecified in the sense of being preset to a value inconsistent with its value at the global
optimum.'' The table also provides two tests of the statistical significance of the effect of more or less
strategic important policies being misspecified. The first test for differences in performance contrasts the
effect of misspecifying the ith policy versus its ith + 1 greater neighbor. The second test contrasts the
effect of misspecifying the focal policy versus the least strategic 15" policy value. The former is the more
stringent test of whether misspecifying a more or less strategic policy impacts final fitness since it focuses
on whether a single increment in significance is significant, while the latter test uses the less demanding
criterion of performance differences between misspecification of the focal policy and of the 15" policy."

Under a hierarchical pattern of interactions, fitness improves markedly as the preset mismatch shifts
from one of the higher-order variables to lower-level policy choices (note that a negative value for
difference indicates that misspecifying the more strategic policy results in lower performance than
misspecifying the less strategic policy) . The results are, however, quite different under a centrality
interaction structure. In the i versus i+1 comparison, the evidence is mixed as to whether misspecifying
more strategic policies results in reduced fitness (3 significant results of a positive difference and 3
significant results of a negative contrast), although the second test, contrasting the focal policy and the
15" policy, does provide fairly systematic evidence of such a misspecification penalty. Why might the
preset mismatch of lower-order policy choices be comparatively more damaging to fitness levels under
the centrality structure? Note that less central variables not only do not constrain, or substantially

influence the payoff of many other choices, but they themselves are not greatly dependent upon other

Tt does not make sense to explore a random specification of the misspecified policy as the analysis explores the
impact, exhaustively, of different policies being misspecified.
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policy choices. Being dependent on other policy choices facilitates mitigating shifts in policy variables
other than the one that is preset—which there is reduced possibility of undertaking for less central
choices.

Consistent with this effect, we see in Figure 3 that firms operating under the constraints of legacy
misspecifications often fail to end up in a policy configuration that would, from an unconstrained
perspective, be internally consistent, i.e., constitute a local peak. (Furthermore, the configurations that do
constitute local peaks are, on average, not particularly close to the global optimum: the average Hamming
distance, or number of variables whose values differ across such local peaks and the global optimum, is
approximately 4). The divergence between final configurations and (unconstrained) local peaks is
particularly evident in the case of the centrality interaction structure. Figure 3 indicates that with such a
structure, a firm ends up at local peak, comprising an internally consistent set of choices across all 15
policy variables, roughly one-half the time when a more strategic policy is misspecified, but does so
relatively rarely when less strategic policies are misspecified. A reasonable inference, explored more fully
in the follow-up analysis, is that when a highly central policy is misspecified the firm builds an internally
consistent set of policy choices compatible with this misspecification. That is, the other policy choices
that are identified through local search form an consistent configuration of policies that are, in some
sense, anchored by this misspecified policy. In contrast, when a less strategic policy is misspecifed, it
seems that the firm frequently “accepts” this misspecification in a sense and builds a policy configuration
that does not correspond to a local peak in the landscape. "

As a further robustness test of this result, a supplemental analysis was run in which the optimal
configuration was identified subject to the constraint that one of the 15 policies is misspecified. This
analysis helps clarify the extent to which the identification of a local peak is driven by the process of local

search from a given starting position versus the global properties of the performance surface. The

12 Obviously, for the case of the 14™ policy, the two tests are identical.
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percentages of local peaks in this analysis turned out to be nearly identical to those in the previous
analysis, ranging from a value of 56% when the most strategic policy is misspecified to merely 5% when
the least strategic policy is misspecified.'* Furthermore, while the firm could always reduce the Hamming
distance to the global optimum—the number of variables set to different values across the final policy
configuration and the global optimum—to just 1, the firm does not, as a second-best, generally seek to
minimize such distance. The Hamming distances between final policy configurations and the global peak
range from an average value of 3.2 when the most strategic policy is misspecified to 1.2 when the least
strategic policy is misspecified.

The role of relatively peripheral policy variables in this regard bears repeating. To the extent that a
focal policy that is misspecified is dependent on or influences other policies, compensating changes in
these other policies can be made that facilitate a distinct, but nevertheless reasonably effective
constellation of policies. In contrast, when a relatively peripheral policy is misspecified under the
centrality structure, the specification of the N-1 policy variables identified through a process of tactical
adjustment tend not to correspond to a local peak (i.e., a consistent set of policy choices). Rather, the firm

in some sense accepts this misspecification.

Modes of Interaction: Influence, Dependency, and Autonomy

Table 3 and Figure 3 taken together suggest that the misspecification of a highly dependent policy
does not impose the same performance costs as the misspecification of other variables. Indeed, there
appears to be a certain robustness associated with dependent variables (see Siggelkow 2002b for a similar

argument). Our analysis of interaction structures up to this point somewhat conflates the role of influence

" All the policy configurations that are reached, by definition, correspond to a local peak in the partial landscape
consisting of the 14 policies that are free to vary. The issue addressed in Figure 3 is whether such a configuration
corresponds to a local peak in full space of 15 policy variables.

4 However, in contrast to the outcome under the process of local search, when a constrained optimum is calculated,
the performance achieved when a more strategic policy is misspecified is statistically inferior to the performance
achieved when a less strategic policy is specified.
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and dependency in that policies that are relatively less dependent also tend to be less influential.”” In
Table 4, we consider an extreme adjacency matrix that disentangles these effects. We specify the first
five policy variables to be influential with probability 1 and not dependent with probability 1 as well (i.e.,
r =1 and p = 1). Analogously, we specify policies 6 to 10 as being influential with probability 0 and
dependent with probability 1 (i.e., r = 0 and p = 1). The remaining five policies (policies 11 to 15) are
treated as being autonomous (i.e., p = 0).

This stylized interaction structure allows us to tease out the underlying forces in the results we
observe with the hierarchical and centrality interaction patterns. Table 4 confirms that constraining one of
the “influential” variables to differ from the global maximum has a profound effect on the relative fitness
level that is achieved. Somewhat more surprisingly, constraining the autonomous variables to differ from
the global optimum has a larger impact than constraining the seemingly more important “dependent”
variables. The reason for this is that the presence of dependency allows for the possibility of substituting
or compensating changes in policy variables. While tightly linked interaction patterns have generally been
viewed as fragile, they also allow, through equifinality, for a certain robustness. In contrast, when an
autonomous variable is misspecified, that has no negative implications for other choice variables; at the
same time, however, there is no opportunity to compensate for any misspecification.

The parsing out of effects in this stylized adjacency matrix also offers greater room for optimism
about the power of high-level strategy-making. The final column in Table 4 tracks normalized fitness
levels as an increasing number of variables are preset to match their values at the global maximum, with
the remaining variables identified through a process of local search. The results suggest that it is sufficient
to specify the purely influential variables correctly and then to follow up with a process of local search.
The dependent variables are likely to be correctly specified if the influential variables are set to the global

optimum, and the autonomous variables, as non-contextualized choices, can readily be set at their

1 Specifying the interaction structures solely by varying p" and p© would not eliminate such confounding effects.
Variation in these parameters not only affects influence and dependency, but also the level of autonomy or
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optimum value via a process of local search. In that sense, at least, the intuition of the sufficiency of
“grand strategy-making” and the presumption that operating details can safely be left unspecified are
validated. It is the intertwining of influence and dependency—particularly with the centrality interaction

structure—that prevents such top-level strategy-making from proving sufficient.

5. Robustness

It is important to consider the robustness of the analyses presented in the previous section. The prior
analyses are based on the averaged results from 100 independent runs for each of 100 distinct adjacency
matrices. That is, for each set of p and r values, 100 distinct adjacency matrices are drawn. For each
realization of one of these adjacency matrices, 100 distinct randomly seeded fitness landscapes are
specified; thus, each of these 100 landscapes shares a common structure of interdependencies, but varies
in terms of the actual performance values associated with different configurations of policy choices.
While these computations should allay concerns about robustness related to random effects, questions of
robustness may remain with respect to the parameters of the model. In order to address them, it is useful
to start out by noting that there are essentially 3 structural parameters: 7, p, and N."’ The analysis above
explored landscape structures in which either 7 or p was held fixed at 0.5 and the other parameter varied
from 0 to 1 among the N policy variables. As part of a structural robustness analysis check, it is important
to examine how these results might change if the conditioning parameter assumes values other than 0.5."
The qualitative effects of the hierarchical position or centrality of a policy variable on the results of

searching from a partially specified optimum or a constrained suboptimum are quite robust to different

interdependence. Thus, the analysis in this section is an important supplement to the prior analysis, but not a
substitute.

'® One could also explore alternatives to the uniform distribution for seeding the landscape; however, prior analysis
(Kauffman 1993; Rivkin 1997) indicate that the analysis of landscapes tends to be quite robust to the specification of
alternative distributions for the random variate.

"7 We have also examined the robustness of our results as N varies. Examining large values of N is extremely
computationally intensive as the set of possible fitness values that need to be considered grows exponentially with

N. We have re-analyzed our results for a range of NV values and the qualitative effects of 7 and p (hierarchy and
centrality) remain unchanged. The one qualitative effect of larger N that is evident is that it tends to reduce
performance across all settings as the global peak increases relative to realized fitness.
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baseline settings of 7 and p. The magnitude of the effects we identify decline (rise) for lower (higher)
baseline values of » and p (again, bear in mind, the analysis consists of anchoring one parameter, for
instance 7, and varying the other parameter, in this case p values for individual policy choices) and to a
lesser degree statistical significance. Low values of these parameters result in relatively simple fitness
landscapes that pose less of a challenge to the problem of identifying strategic configurations and hence
generate less variance and higher performance relative to the global peak, while higher values of the
baseline parameter generate more complex landscapes that more sharply highlight the distinct
experimental settings in the analysis.

Numerous other extensions to the basic analysis could be attempted. Given the simplicity of the
temporal dimension of our modeling effort (which assumed the total irreversibility of specific variables),
we did not discuss degrees of irreversibility, although differences in this regard might supply an
additional useful marker of influence. Similarly, even though we did not allow the weights on (the direct
effects of) choices to vary, it is clear that that is another key indicator of influence in the real world, either
individually or in interaction with irreversibility (see Solow, et al. 2002 for an examination of this form of
heterogeneity). Such extensions would, however, constitute a distinct modeling exercise rather than an

examination of the robustness of the current specification.

6. Conclusion

Some choices condition other choices. This conditioning may be synchronic, as implied by the
activity systems approach, or diachronic, as in models of path dependence and commitment. This paper
was motivated by the idea that it would be useful for the strategy field to move beyond rhetorical appeals
regarding the relative importance of one set of “linkages” or another. This task will require both more

carefully specified theoretical models that embody both sets of linkages, as well as empirical work that is
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fine-grained enough to permit exploration of the nuances of choice structures (cf., Siggelkow 2002a). The
current analysis is clearly targeted primarily at the former goal.

We find that it is useful to distinguish the degree to which choices are autonomous, influential, or
dependent. Autonomous choices are choices that are disconnected from others. In relation to such
choices—but not others—the notion of universal best practices makes some sense. Note that while getting
these choices wrong does not, by definition, alter the payoffs from other choices, it is also true that these
kinds of choices, if wrong, cannot be compensated for by dependent choices. Still, such choices can be
made independently of an overarching choice of strategy and therefore have the quality of operational
policies (Porter 1996).

Similar considerations sometimes also apply to groups of choices, as in the (nearly) decomposable
systems originally highlighted by Simon (1962) and recently analyzed in the business context with an NK
approach by Ethiraj and Levinthal (2003) and Rivkin and Siggelkow (forthcoming) among others. At the
limit, a subsystem of choices that do not interact with any choices outside the subsystem can be treated
like an individually autonomous choice: partitioned and made on standalone terms. The implied reduction
in the complexity of the overall choice problem tends to be significant.

Choices that are not autonomous or decomposable, in contrast, should not be treated symmetrically—
as they are by the canonical NK model—as having equal potential to be influential. As our examination of
examples suggested, it is important to recognize both the multiplicity of choices (or themes) and the fact
that some of them matter more than others. Our modeling effort set up two cross-sectional alternatives to
the random interaction model of NK landscapes that encompassed variations in individual choice
elements’ interactions with others: hierarchy and centrality. The initial analysis of strategy-making
confirmed, under the assumption that choices are of symmetric weight but asymmetric in their
interactions, that correctly prespecifying policy choices that are more strategic provides more leverage
than correctly prespecifying less strategic or arbitrary policies. However, the requirements as to the
proportion of policy choices that need be specified correctly to reach the global optimum remain

daunting.
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The results regarding the constraints of history—preset mismatches rather than matches—also
revealed the salience, although here in a negative sense, of more strategic variables under the hierarchical
interaction structure. However, with importance determined by degree of centrality, more puzzling results
were observed. The subsequent analysis of the pure effects of influence, dependency, and autonomy
helped to unpack this puzzle. In characterizing the initial matrices of interaction, as we varied the
parameter r, we changed both the likelihood that a policy is influential and, conversely, the degree to
which it is dependent. As a result, the interaction structures depicted in Figures 2a and 2b, for example,
had a more complex structure than may have been apparent at first. Separating out the effects of
influence, dependency, and autonomy brought dependent choices—choices that are more influenced than
influential—into particularly sharp focus. The modeling effort indicated that such choices can afford two
very distinct types of benefits: enabling the more effective pursuit of the strategy implied by higher-order
choices by aligning with them, and mitigating the effects of higher-order handicaps. In other words,
dependent choices can be either advantage-seeking or disadvantage-mitigating, although the first role is
the one that is typically stressed in the literature on strategy. The kind of policy configurations associated
with disadvantage mitigation often do not correspond to (unconstrained) local peaks in the performance
landscape. By implication, the standard strategic test of internal consistency at a point in time cannot be
applied independently of dynamic considerations, because optimal adjustment over time to constraints
may result in what looks like an internally inconsistent set of choices from a purely static perspective.

Strategic positions unfold over time. That unfolding may reflect the elaboration of some initial
strategic choices, or the temporal resolution of a strategic position may reflect efforts to establish an
effective position subject to some historical constraints on one or more policy choices. The impact of
these diachronic linkages is importantly mediated by the presence of synchronic linkages. In the absence
of linkages across policy choices, the sequential search for a optimal policy configuration is trivial.
Conversely, in the absence of dependency relations among policy choices, there is no opportunity to

accommodate and mitigate the effect of a historically constrained and misspecified policy. It is the
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conjunction of the synchronic and the diachronic that underlies the complexity of strategy formation and

it is some insight into their joint consequences that we have tried to offer.
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Figure 1. Southwest Airlines’ Activity System
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Figure 3: Final Policy Configurations
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Table 1: Value of Partially Articulated Activity Map with Hierarchical Structure’

Number of
Policies

1

2

3

10

11

12

13

14

15

Initial Value

7287*
(.0920)
7463
(.0897)
7630%*
(.0878)
7814%*
(.0856)
7997+
(.0827)
8181+
(.0800)
8366+
(.0774)
8558
(.0731)
8769%*
(.0683)
8962%*
(.0629)
9182+
(.0569)
9386
(.0487)
9579
(.0405)
9789
(.0294)
1.0000
(0.0000)

Ordered
Number of Steps

6.6422
(2.2727)
6.2023
(2.1614)
5.7824
(2.0198)
5.3181
(1.9235)
4.8830
(1.7914)
4.4264
(1.6706)
3.9486
(1.5591)
3.4782
(1.4280)
2.9761
(1.2904)
2.5043
(1.1985)
1.9874*
(1.0436)
1.5047
(.8924)
1.0224%*
(.7259)
0.4990
(.5000)
0.0000
(0.0000)

Final Fitness

0.9731
(.0334)
9771%*
(.0309)
9807+
(.0287)
9840%*
(.0261)
9875
(.0237)
9901 %*
(.0209)
9926%*
(.0180)
9948%%*
(.0153)
9965
(.0126)
9978
(.0100)
9987
(.0077)
99947
(.0049)
0.9997
(.0035)
1.0000
(0.0000)
1.0000
(0.0000)

Initial Value

7256*
(.0935)
7387
(.0932)
511
(.0933)
7663%*
(.0911)
7814%*
(.0911)
7979%*
(.0898)
8128+
(.0884)
8339
(.0857)
8524
(.0821)
8731%*
(.0775)
8952%*
(.0727)
9188+
(.0654)
9450
(.0557)
9721+
(.0410)
1.0000
(0.0000)

T * indicates p <.01 and ** p < .005; standard deviations are provided in parentheses.

Random
Number of Steps

6.6551
(2.2587)
6.1959
(2.1915)
5.8262
(2.0592)
5.3560
(1.9686)
4.9093
(1.8704)
4.4298
(1.7371)
3.9714
(1.6207)
3.4573
(1.4803)
2.9978
(1.3470)
2.5010
(1.2090)
2.0122%
(1.0576)
1.5044
(.8979)
0.9970%*
(.7226)
0.4926
(.4999)
0.1390
(0.0000)

Final Fitness

0.9729
(.0335)
9758
(.0325)
9788
(.0311)
9820%*
(.0293)
9852%*
(.0266)
9883
(.0242)
9909
(.0216)
9925%*
(.0200)
99497
(.0133)
9967+
(.0133)
9981 %*
(.0097)
9989
(.0077)
0.9997
(.0040)
1.0000
(0.0000)
1.0000
(0.0000)
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Table 2: Value of Partially Articulated Activity Map with Centrality Structure’

Number of
Policies

1

2

3

10

11

12

13

14

15

Initial Value

7194
(.0950)
7331
(.0949)
7469
(.0947)
7644
(.0933)
7833
(.0922)
7999
(.0905)
8230
(.0870)
8488
(.0803)
8721+
(.0749)
8966
(.0676)
9204+
(.0578)
9426+
(.0486)
9635%*
(.0377)
9817%*
(.0269)
1.0000
(0.0000)

Ordered

Number of Steps

6.9004
(2.3397)
6.4701%
(2.2014)
6.0251%*
(2.0981)
5.5145
(1.9086)
5.0197
(1.7793)
4.5404
(1.6390)
4.0265
(1.5151)
3.5004%*
(1.3775)
3.004*
(1.2784)
2.4945%
(1.1327)
2.0054
(1.0084)
1.4944%
(.8706)
9978
(.7136)
4959
(.5000)
0.0000
(0.0000)

Final Fitness

9744
(.0340)
9795%*
(.0313)
9836+
(.0290)
9886
(.0242)
9917%*
(.0204)
9944
(.0169)
9965
(.0135)
9979
(.0153)
9988
(.0101)
9997
(.0077)
9998
(.0039)
1.0000%*
(0.0000)
1.0000%*
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)

Initial Value

7203
(.0951)
7335
(.0935)
7473
(.0939)
7614%*
(.0919)
7769%*
(.0906)
7931%*
(.0888)
8122%*
(.0881)
8288
(.0860)
8486
(.0832)
8704%*
(.0768)
8931%*
(.0735)
9165%*
(.0672)
9438
(.0575)
9703+
(.0430)
1.0000
(0.0000)

T * indicates p <.01 and ** p < .005; standard deviations are provided in parentheses.

Random

Number of Steps

6.9017
(2.4119)
6.4166**
(2.3066)
5.9333%*
(2.1717)
5.4999
(2.0423)
5.0450
(1.9245)
4.5224
(1.7841)
4.0271
(1.6614)
3.5574%%
(1.5240)
3.0418*
(1.3864)
2.5254%
(1.2199)
2.0273
(1.0914)
1.5216*
(.8995)
19993
(.7303)
.5000
(.5000)
0.0000
(0.0000)

Final Fitness

9714%*
(.0356)
9745%*
(.0346)
9780%*
(.0332)
9816%*
(.0309)
9844
(.0286)
9872%*
(.0261)
9897+
(.0241)
9925
(.0209)
9948
(.0175)
9965
(.0146)
99807
(0111)
99907
(.0075)
9996
(.0049)
1.0000
0.0000
1.0000
(0.0000)

33



Table 3: Constraints of History®

Hierarchy

Policy Mis- Final Fitness Difference Difference

specified (ivs.i+1) (ivs. 15)

1 9308 -.0016** -.0148**
(.0447)

2 9324 -.0019** -.0133%*
(.0447)

3 .9343 .0006 -.0114%**
(.0432)

4 9337 -.0034** -.0120**
(.0440)

5 9370 .0014* -.0086**
(.0421)

6 9356 -.0022** -.0100**
(.0429)

7 9379 -.0012* -.0078%*
(.0418)

8 .9390 -.0008 -.0066**
(.0414)

9 .9398 -.0016** -.0058%*
(.0411)

10 9414 -.0004 -.0042**
(.0400)

11 99418 .0002 -.0038%**
(.0395)

12 9416 -.0020** -.0040%**
(.0402)

13 99436 -.0014** -.0020**
(.0392)

14 .9450 -.0006 -.0006
(.0387)

15 9456 0.0000 0.0000
(.0385)

T * indicates p <.01 and ** p <

Final Fitness

9377
(.0425)
9392
(.0414)
9389
(.0419)
9378
(.0416)
9385
(.0419)
9378
(.0421)
9371
(.0423)
9395
(.0412)
9392
(.0415)
19380
(.0420)
9381
(.0416)
9373
(.0421)
9396
(.0418)
9377
(.0421)
9371
(.0424)

.005; standard deviations are provided in parentheses.

Centrality
Difference Difference
(ivs.i+1) (ivs. 15)
-.0015%* .0006
.0003 .0021**
.0010* .0018**
-.0007 .0008
.0070 .0014*
.0070 .0008
-.0024** 0.0000
.0002 .0024**

.0012* .0022%*
-.0001 .0009
.0009 .0011*
-.0023%* .0002

.0018** .0025%*
.0007 .0007
0.0000 0.0000
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Table 4: Extreme Adjacency Matrix'

Influential <

Dependent <

Independent {

T * indicates p <.01 and ** p < .005; standard deviations are provided in parentheses.

-

\

Policy Final Fitness
Mis-specified

1

2

3

10

11

12

13

14

15

9212
(.0483)
9216
(.0480)
9222
(.0480)
99214
(.0483)
99219
(.0479)
9368
(.0439)
9356
(.0454)
9365
(.0440)
9364
(.0441)
9359
(.0446)
9194
(.0510)
9193
(.0509)
9196
(.0612)
9196
(.0633)
9186
(.0645)

Fitness —
Avg. Influence

-.0152%*

-.0139**

-.0148%*

-.0147**

-.0142%*

-.0023%*

-.0023%*

-.0021**

-.0021**

-.0030%**

Constraints of History

Fitness —
Avg. Dependent

-.0150%*

-.0146**

-.0141**

-.0148**

-.0144%*

-.0169**

-.0169**

-.0167**

-.0167**

-.0176**

Fitness —
Avg. Independent

.0019**

.0023%**

.0029**

.0022%*

.0026**

.0175%*

.0163**

.0172%*

0171%*

.0166**

Fitness with partial
activity map
.9590
(.0454)
.9692
(.0423)
.9802
(.0367)
9929
(.0227)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)
1.0000
(0.0000)



