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An Integrated Model for Whether, Who, When

and How Much in Internet Auctions

Abstract

We develop a general parametric modeling framework for bidding behavior in Internet auc-
tions. Toward this end, we incorporate and model simultaneously four key components of the
bidding process under our integrated framework: Whether an auction will have a bid at all, (if
so) who has bid, when they have bid, and how much they have bid over the entire sequence
of bids in an auction. This integrated framework is based on a single latent time-varying con-
struct of consumer willingness to bid (WTB), which bidders have and update for a particular
auction item over the course of the auction duration. Our modeling approach is also based on a
simple yet very general bidding premise: The observed bidder’s latent WTB at a specific bid is
greater than the outstanding bid; yet, WTB is unconstrained for all other potential bidders. In
this manner, we impose no structural assumption on bidder rationality or equilibrium behavior;
instead, deriving our model using a probabilistic modeling paradigm. We describe in detail the
advantages that our reducted-form approach allows us, and the limitations such an approach
also entails.

Using a database of notebook auctions from one of the largest Internet auction sites in Korea,
we demonstrate that this general (yet parsimonious) model captures the key behavioral aspects
of bidding behavior. Furthermore, substantively, through a data-windowing procedure to assess
the set of potential bidders for a given auctioned item, we provide a valuable tool for managers at
auction sites to conduct their customer relationship management efforts which require them to
evaluate the “goodness” (whether) of the listed auction items and the “goodness” (who, when,
and how much to bid) of the potential bidders in their Internet auctions.

Keywords: Bayesian Inference, Bidding Behavior, Probability Model



1 Introduction

The recent proliferation of auction sites on the Internet and the growing importance of online

auctions as exchange mechanisms have attracted the attention of academic researchers who have

studied such issues as the effect of auction formats (Lucking-Reiley 1999), the extent of the winner’s

curse (Bajari and Hortaçsu 2003), the last-minute bidding phenomenon (Roth and Ockenfels 2002)

and the value of seller reputation (Melnik and Alm 2002). However, our understanding is still rather

limited in our ability to explain bidding behavior over the entire sequence of bids, as opposed to

simply summary outcomes (e.g., final auction prices), in an auction (e.g., Ariely and Simonson

2003, Chakravarti et al. 2002).

For instance, while an auction is in progress, participants in the auction will be influenced by

various types of value signals (e.g., minimum bid, seller reputation, other participants’ bids, number

of bids submitted up to that point, etc.) which can, in turn, impact their decision dynamics for

the auctioned item (Ariely and Simonson 2003). Recently, the standard assumption of bidder

rationality in online bidding behavior has been questioned in a variety of empirical settings. In

particular, Dholakia and Soltysinski (2001) reported evidence of herd behavior bias, and Kamins,

Drèze and Folkes (2004) found an effect of minimum bid on the final auction price. Furthermore,

some fundamental aspects of consumer decision making such as preference construction (Tversky

and Kahneman 1986), choice context (Bettman, Luce and Payne 1998) and learning and expertise

(Alba and Hutchinson 1987) are likely to apply to auctions just as they do in regular purchase

decisions. In this research, therefore, we develop a dynamic parametric stochastic model of bidding

behavior, which considerably differs from prior research that has ignored bidding dynamics.

To accomplish this, we derive a probability model for auction behavior by positing the existence

of a latent construct which we denote consumer willingness to bid (WTB). This latent construct
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is a time-varying stochastic valuation that an individual bidder has and updates for a particular

auction item over the course of the auction duration. Based on WTB, we study key determinants

of dynamic bidding behavior by developing an integrated (yet parsimonious) model which explicitly

captures the critical features of bidding behavior established in the existing literature. Toward this

end, we incorporate four key components in building a model of bidding behavior over the entire

sequence of bids — whether an auction will have a bid at all, (if so) who has bid, when they have

bid and how much they have bid — in one integrated framework. In addition, we include controls

for the presence of other bidders in WTB estimation, including both observed bidders in an auction

and allowing for the presence of “latent” bidders who might be following the bidding process but

do not submit any bid.

We remark that the importance of the assumptions of bidder rationality and equilibrium be-

havior is evident in the emerging literature of estimating consumer valuations from auction data.

Almost all existing empirical papers (e.g., Donald and Paarsch 1996, Guerre, Perrigne and Vuong

2000, Laffont, Ossard and Vuong 1995) rely on theoretical assumptions of auction behavior and

equilibria. However, we impose no structural restriction on bidder behavior because there appears

to be no theoretical and/or empirical work that addresses in a fully structural equilibrium model

bidding dynamics over the entire sequence of bids in an auction. Instead, our approach is based on

a very general bidding premise: The observed bidder’s WTB at a specific bid is greater than the

outstanding bid; yet WTB is unconstrained for all other potential bidders. Therefore, our model

is not structural in that it does not result from first-principles of utility or profit maximization

for bidders and sellers, respectively. Rather, we develop a model for a dynamic bidding process in

which we capture WTB in a reduced-form outcome using a parametric model.

With the lack of equilibrium-generating process directly incorporated into our model, there

are of course both advantages it affords as well as limitations it presents. On the one hand, as
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we demonstrate, our model is parsimonious, fits the data extremely well, and does not require

us to model a very complex bidding process that could possibly have to include both underlying

dynamics and strategic use of available information among bidders and endogenous choices on the

part of the seller. For the purposes of description and prediction, our main goals here, a parametric

probabilistic approach is entirely adequate. In fact, it may be less prone to misspecify models as

less assumptions need to be made about the underlying process as recent research (Bajari and

Hortaçsu 2004) has shown that differences between many structural models of behavior can not

be identified from commonly observed data sets (first-price auctions as described here) and in fact

“..., we can always reverse engineer a structural model that is consistent with the data.”

On the other hand, a plethora of articles (e.g., Bajari and Hortaçsu 2003, Donald and Paarsch

1996, Guerre, Perrigne and Vuong 2000, Laffont, Ossard and Vuong 1995) have clearly demon-

strated the existence of strategic behavior among bidders and the ability to perform policy ex-

periments through a structural equilibrium process. Description and prediction may be possible

without incorporating strategic behavior (as our research here demonstrates), but a fundamental

understanding of the “why” (its source) may still be left unknown. We acknowledge that without

such modeling there is a limit to the inferences derived and our model is no exception to this. It is

for this reason, that in the concluding section, we make a call for further empirical research that

will test the bounds of probabilistic models to fit data generated through equilibrium process. Our

belief is that this model is one platform that can address this call.

Our model is built to be an integrated model for the series of whether, who, when and how

much for the entire series of bids on an auction item, instead of independently modeling summary

features of the auction such as the number of participants, the number of bids submitted, or the

ultimate amount of the winning bid. These summary measures are a natural consequence of our

model (and an output thereof) but are not modeled directly. We instead use them to validate the
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fit of our model. Thus, we present a probability model for dynamic bidding behavior that can be

used for exploration, summary and forecasting of Internet auctions. To the best of our knowledge,

this is the first attempt to formally model behavioral aspects of bidding behavior for the entire

sequence of bids in Internet auctions.

Beyond the specification of the model, per se, our research provides a valuable tool for managers

at auction sites to conduct their customer relationship management efforts which require them to

evaluate the “goodness” (whether) of the listed auction items and the “goodness” (who, when and

how much to bid) of the potential bidders in their Internet auctions. Since our model can infer

whether, who, when and how much to bid at each time over the course of the auction duration among

the potential bidders, our approach can be considered for developing contact (communication)

strategies at auction sites. This is a fundamental marketing problem faced by auction sites; that is,

advertising their auction items and recruiting bidders for their auctions (Wang and Montgomery

2003).

Finally, in addressing these important substantive issues, we use a comprehensive database of

notebook auctions obtained from an auction company. The database contains auctions of no bids

as well as auctions with bids, and information regarding the complete history of bids, features of

auction design, bidder and seller characteristics and product specifications of auction items. Hence,

this database is indeed a panel data set which allows us to incorporate a set of noble variables (e.g.,

individual bidder’s past bidding experience) under our model. In light of the potential importance of

cross-auction behavior, sparse information that exists across auctions and our desire to incorporate

heterogeneity, we adopt a Bayesian approach and estimate the models using Markov chain Monte

Carlo (MCMC) methods (Gelfand and Smith 1990). Therefore, this paper makes substantive and

methodological contributions to both the existing auction and marketing literature.

The remainder of the paper is organized as follows. Section 2 gives an overview of the data
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and describes summary statistics as a way to begin to understand the nature of bidding behavior

in our Internet auction data. In section 3, we present the model specification and discuss our

computational approach using a Bayesian framework. In section 4, we apply the proposed model to

notebook auctions and validate the proposed model based on the key summary measures described

in section 2. We discuss other managerial implications of this research and conclude with directions

for future research in section 5.

2 Data Overview

In this section, we describe the data and propose several sets of descriptive statistics derived from

the database. This analysis will inform us about the degree of flexibility needed in our modeling

approach to investigate the key determinants of the bidding process in online auctions. In addition,

it will help demonstrate whether the proposed model properly captures the key behavioral aspects

of online bidding behavior, thus acting as measures of model fit.

2.1 Data Description

The data are for notebook computer auctions from one of the largest Internet auction sites in Korea

for the time period of July 2001 to October 2001. The auction mechanism used on this site is an

ascending first-price auction or English auction in which bids are ascending and the highest bidder

wins and pays the amount she bids. The database contains auctions of no bids as well as auctions

with bids, and information regarding the complete history of bids, features of auction design, bidder

and seller characteristics and product specifications of the auction items. Thus, this database is

indeed a panel data set that follows individual bidders over time and thus provides the richness of

having multiple bids on each individual in the database (if they exist).

We focus on notebook auctions for the sale of a single item.1 The total number of notebook
1Modeling bidding behavior including auctions with multiple items is possible under our framework; yet, we

believed that the bidding dynamics would be fundamentally different and hence is an area for future research.

5



auctions considered here is 2618 items, in which 296 auction items have no bids, and the total

number of bids across all the auctions is 21952. On average, there are about 5.8 unique bidders

and 8.4 bids per auction. We note that all bids are in Korean currency (won), where 1200 won

corresponds approximately to $1.

At the auction site considered in this research, there are five feature variables for (seller) auction

design: placement (yes or no) of product images or pictures on the listing page, minimum bid

amount (also called a “public” reserve price), “buy-it-now” (BIN) option2 and its price (a fixed

price which allows bidders to prematurely end an auction by exercising an option to buy the item)

and auction duration.

Other variables in the dataset include the following. Sellers on this auction site are rated by

winning bidders. The rating is in the form of a positive, negative or neutral response after each

auction is completed. While this information changes with transaction in which the winning bidder

rates the seller, the database we obtained only maintains the cumulative records of these reputation

variables at the start of the data period. We also have information on bidder characteristics which

include demographics and behavioral characteristics such as the number of previous visits to the

site and the number of page views across all product categories. Similar to the seller reputation

variables, the auction site only keeps the cumulative information on these variables at the start of

the data period. Therefore, these variables are also static in our database, again as of July 2001.

Finally, the data includes information on product features for each auctioned item as listed

on the site, which contains the following variables: CPU type (Pentium or Celeron), CPU speed,

memory, hard disk, screen size, brand name, and the number of months that the auction item has

been used by the seller (0 for a brand-new item). There are three American, three Japanese, and

six Korean brands, which account for about 29%, 14%, 52% of the 2618 items, respectively. All of
2The BIN option at the auction site considered here remains in effect throughout the auction as long as it is not

exercised.
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the rest of the brands, which we aggregated and grouped into a category “others”, accounts for 5%

of the items. Table 1 reports summary statistics of each of these variables described in this section.

These variables, along with a set of noble time-varying variables (e.g., individual bidder’s past

bidding experience) to be described, will serve as covariates toward explaining bidding behavior via

an individual bidders’s dynamic and latent WTB.

Insert Table 1 about here

2.2 Empirical Findings

An interesting feature of the database is that there is wide variation in the number of (observed)

bidders and the number of bids per auction. About half of the auctions have three bidders or less.

In sharp contrast, about 30% of all the auctions have six bidders or more, and about 40% have six

bids or more.

We describe bid timing, unitized to [0, 1] for description and explication (but not in the model),

accomplished by dividing each bid time by the auction duration of the item. Bidding activity is

concentrated at the end of each auction. About 35% of bids are submitted after 97% of the auction

duration has passed (i.e., the last two hours of a three day auction). We observe that winning

bids tend to come even later. About 75% of final bids are submitted after 97% of the auction

duration has passed. This practice of a last-minute bidding phenomenon has attracted a good

deal of attention among academic researchers (e.g., Bajari and Hortaçsu 2003, Roth and Ockenfels

2002).

Besides the timing of bids, bid amounts (or bid increments) are of great importance in Internet

auctions since the key decision by potential bidders centers on how much (more) to bid to become

the highest current bidder or to win the auction outright. We observe large variation in bid amounts

ranging from less than a dollar to more than several thousand dollars (mean = $762, std. = $507).
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A striking observation is on one of the seller design mechanisms, i.e., BIN feature. In particular,

about 90% of the auctions (i.e., 2314 out of 2618 auction items) are designed with this option which

turns out to play a major role in influencing bidding behavior. About 40% of the auctions (i.e.,

954 out of 2314 auctions) are ended with their corresponding BIN prices. Furthermore, more than

half of these auctions are ended at the first bid with their corresponding BIN prices.

The descriptive statistics discussed in this section are useful as a first step to understand the

nature of bidding behavior in these notebook auctions. For instance, we show that a last-minute

bidding phenomenon is prevalent. We also observe wide variation in bid amounts and a large

number of auctions ending with BIN option at the very early stage of the auction duration. These

behavioral aspects of online bidding are explicitly explored in section 3 and the descriptive analyses

presented here provide us an “inkling” that we need a very flexible parametric model.

3 Model Development

We develop an integrated model of bidding behavior that includes four key modules: Whether

an auction will have a bid at all, (if so) who has bid, when they have bid and how much they

have bid over the entire sequence of bids in the auction. In constructing the proposed model, we

incorporate controls for competition among potential bidders including those participants who we

do not directly observe in the auction. As a step to this end, we define an individual bidder’s latent

WTB at a specific bid in an auction. This is our fundamental construct to explain the bidding

process that links all four modules together. We conclude the section with a description of the

computational approach for the integrated model.

3.1 Rate for Bid Speed

A consumer’s latent WTB is the kernel of our model for online bidding behavior. This latent

construct is a time-varying stochastic valuation that an individual bidder has and updates for a
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particular auction item over the course of the auction duration. We assume that WTB determines

the rate of bid speed which in turn directly governs the whether, who and when models in our

integrated framework, and as described the how much model in a more indirect way. More formally,

the bid speed, sk
ij , of person j who is a potential bidder at bid k in auction i, is assumed to follow

an exponential distribution and is modeled as follows:

sk
ij ∼ λk

ij · exp
{
− λk

ij · (tkij − tk−1
i )

}
, (1)

where

log(λk
ij) = β0 + β1(wk

ij − bk−1
i ) + ςk

ij , ςk
ij ∼ N(0, σ2

ς ) , (2)

tkij is a random variable denoting person j’s timing of bid k in auction i, and wk
ij is person j’s

WTB at bid k in auction i. Let tk−1
i and bk−1

i denote the observed bid time and amount of the

(k − 1)-st bid in auction i, respectively. Further, it is assumed that log(λk
ij), the rate that governs

one’s bid speed, follows a normal distribution with a mean of β0 + β1(wk
ij − bk−1

i ) and a variance of

σ2
ς . Thus, (wk

ij−bk−1
i ), person j’s surplus at bid k in auction i, is used to compute the deterministic

component of person j’s rate for bid speed at bid k in auction i. Finally, ςk
ij is a random component

of person j’s rate for bid speed at bid k in auction i, varying from bid to bid, possibly as a result

of unobserved variables.

The exponential distribution used to model the rate of bid speed, based on WTB, merits explicit

mention because it is both behaviorally plausible and mathematically desirable. Imagine a bidder

whose bid has been outbid, i.e., she is not the highest bidder any more. Thus, her previous bids and

effort are now gone and things start conditionally afresh. Her decision now centers on whether or

not to continue bidding to be the highest bidder or to win the auction (if so, when and how much to

bid). Behaviorally, therefore, the well-known memoryless property of the exponential distribution

may hold, conditionally on history, in the auction context.
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It is important to note, however, that our choice of the exponential distribution for bid speed

comes with a balance of positive and negative aspects. In particular, the positive aspects are that it

leads to closed-form solutions to the whether, who and when parts of the model, a feat that should

not be minimized. On the other hand, a more general timing model like the Weibull model would

be more flexible and may lead to improved model fit; albeit, at the cost of closed-form tractability.

3.2 The Proposed Model

In this section, we first derive the whether model which indicates whether or not any bids are

realized over the course of an auction duration. Conditional on the realization of (at least) a bid,

we then derive the probabilistic closed-form expressions for the who and when models which are

based on the truncated exponential distribution. Finally, in order to consider how much bidders

have bid, we employ a parametric family of distributions to capture the observed bid amounts.

In constructing the whether, who and when probability models, the following sequence of stages

occurs: We infer WTB at a specific bid, determine which bidders have WTB greater than the

outstanding bid, derive the bid rates from the latent WTB construct as given by equations (1) and

(2), and calculate the probabilities of whether, who and when. In doing so, we note that if wk
ij is

greater than bk−1
i (i.e., outstanding bid or minimum bid for the first bid), person j is in the bidding

competition for bid k. Otherwise she is out of the race for bid k in auction i. Therefore, we have

a time-varying set of latent bidders, denoted as Jk
i , who will compete for bid k in auction i. Note

that j = 1, . . . , Jk
i will be in the race for bid k and j = Jk

i + 1, . . . , Ji will be out of the race at

bid k in auction i. As a result, the number of latent competing bidders (Jk
i ) is a random variable

in our system and varies over a series of bids in the auction. Hence, our model can be considered

as a way to endogenously incorporate entry behavior in the auction. We note that the number of

potential bidders (Ji) is an important determinant of our model and is one we explore extensively
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in section 3.3 via a data-windowing procedure. For now, we simply let Ji denote the number of

potential bidders who will be in and out of the race over a series of bids in auction i.

3.2.1 The Whether Model

To derive the probability of whether an auction will have a bid at all, we note that one critical

aspect of our approach is that the minimum of a set of exponentials is exponentially distributed

with rate equal to the sum of the rates (see the Appendix for details). Thus, the whether model is

the probability that no bid is realized during the course of the auction duration (Ti) based on the

sum of λk=1
ij across Jk=1

i bidders at the first potential bid. That is, the probability that an auction

i will have no bids (or the first is not realized) over its duration Ti is given by:

Pr[min(t1ij) > Ti] = exp
{
−

J1
i∑

j=1

λ1
ij · Ti

}
. (3)

To get the likelihood function of whether an auction will have a bid at all, equation (3) can be

multiplied across the I auctions:

I∏

i=1

{
Pr[min(t1ij) > Ti]

}I1
i

, (4)

where I1
i is an indicator function in which I1

i is 1 if auction i has no bids, and 0 otherwise.

3.2.2 The Who Model

To derive the probability of who has bid at a specific bid on the auction item, we calculate the

probability that one exponential random variable is smaller than all the others. That is, person j

is the bidder if her exponential bid time drawn from equations (1) and (2) is the smallest among

all potential bidders. In other words, at each bid k, there is an exponential race with rates related

to WTB, and the bidder with the shortest time wins the race and is the bidder. We note that the

observed bidder at bid k, by definition, must be in the race, so her WTB is truncated below by the

outstanding bid. For other potential bidders, their WTB could be anywhere, i.e., either less than
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or greater than the outstanding bid. We thus impose no structural restriction on one’s bidding

behavior to infer WTB, which we capture in a reduced-form outcome.

For Jk
i latent competing bidders at bid k in auction i, the probability that the k-th truncated

exponential bid time by person j is the smallest among a set of bid times by all other bidders is as

follows:

Pr[min(tkij) = tkij | tk−1
i < min(tkij) ≤ Ti , ∀j ∈ Jk

i ] =
λk

ij

Jk
i∑

j=1
j 6=jk−1

λk
ij

. (5)

Equation (5) is based on a set of Jk
i exponentials with rates equal to λk

ij , j = 1, . . . , Jk
i . We

include the detailed derivation of the who model in the Appendix. Since it is not allowed for an

individual bidder to bid twice in a row (i.e., outbid herself), it is required to take out the current

rate of bid speed by the previous bidder from the denominator in equation (5). The probability of

who has bid is proportional to one’s bid rate which is in turn a function of her WTB. We remark

that while this equation addresses the likelihood of who the bidder is, it does not describe anything

related to bid submission time by the bidder.

To get the likelihood function of who has bid, equation (5) can be multiplied across the I

auctions, Ki bids, and Jk
i bidders:

I∏

i=1

Ki∏

k=1

Jk
i∏

j=1

{
Pr[min(tkij) = tkij | tk−1

i < min(tkij) ≤ Ti , ∀j ∈ Jk
i ]

}Ik
ij

, (6)

where Ik
ij is an indicator function in which Ik

ij is 1 if person j bids at bid k in auction i, and 0

otherwise.

3.2.3 The When Model

We derive the probability of when each bid occurs. Since the information of who has bid at bid k

in auction i is given in equation (5), we derive the conditional probability of when bid k would be
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realized given who has bid. The basic idea is that if we have the Jk
i exponentials as in equations (1)

and (2), the bidder is the person with the minimum order statistic of the sk
ij , and the bid submission

time is the value of that minimum order statistic. That is, the smallest of the tkij is given by:

Pr[min(tkij)− tk−1
i = ∆tkij | tk−1

i < min(tkij) = tkij ≤ Ti,∀j ∈ Jk
i ]

=

Jk
i∑

j=1
j 6=jk−1

λk
ij × exp

{
−

Jk
i∑

j=1
j 6=jk−1

λk
ij ·∆tkij

}

1− exp
{
−

Jk
i∑

j=1
j 6=jk−1

λk
ij · (Ti − tk−1

i )
}

. (7)

As shown in equation (7), the probability of when bid k occurs does not include λk
ij , per se, but

has the sum of λk
ij across all the latent competing bidders as its rate. This result, that the minimum

of a set of exponentials is exponentially distributed with rate equal to the sum of the rates is a nice

property of the exponential distribution. We note that the denominator in equation (7) arises from

the truncation that bid k occurs between time tk−1
i and the auction end time Ti. From equations

(3), (5), and (7) we can now see the integrated link of WTB, which determines the mean of the bid

rates and then simultaneously determines the whether, who and when probabilities.

To get the likelihood function of when the bid is realized, equation (7) can be multiplied across

the I auctions, Ki bids and Jk
i bidders:

I∏

i=1

Ki∏

k=1

Jk
i∏

j=1

{
Pr[min(tkij)− tk−1

i = ∆tkij | tk−1
i < min(tkij) = tkij ≤ Ti, ∀j ∈ Jk

i ]
}Ik

ij
. (8)

3.2.4 The How Much Model

We next describe the distribution of how much is bid at a specific bid in an auction. In order to

do so, we first assume a baseline model for latent bid amounts, denoted as dk
ij , of bidder j at bid k

in auction i that follows a normal distribution:

dk
ij = wk

ij + ζk
ij , ζk

ij ∼ N(0, σ2
ζ ) , (9)
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with a mean of wk
ij and a variance of σ2

ζ . Thus, wk
ij (our latent WTB) is the mean component of

bidder j’s valuation at bid k in auction i and ζk
ij is a random component.3 We note, therefore, that

the how much model is explicitly linked to the whether, who and the when models through WTB,

which consequently leads to a very parsimonious integrated model for online bidding behavior.

In the model of how much to bid, however, we also explicitly incorporate the probability that

one bids the BIN price which equation (9) does not. In particular, on an auctioned item designed

with BIN, if one’s latent bid amount dk
ij is greater than the BIN price, we include a stochastic

component to allow for the possibility that she chooses not to exercise BIN.

To formally develop the full model of how much to bid (including the BIN decision), we need

to extend equation (9) and thus introduce the following notation. Let bk
ij denote bidder j’s bid

amount at bid k in auction i and Bi be the BIN price in auction i. We separately consider the two

types of auctions: auctions designed with and without BIN. Among the first type of auctions, we

further categorize bids based on dk
ij compared to Bi, i.e., the upper bound of the bid amount in

auction i. When dk
ij is greater than Bi, bidder j can finish the auction by bidding Bi (i.e., end the

auction with BIN price) or bid less than Bi. In order to represent these two cases under the how

much model, we employ a logit framework. In particular, when dk
ij is greater than Bi, we denote

pk
ij as the probability of bidding BIN price at bid k in auction i:

Pr[bk
ij = Bi] = pk

ij =
exp

{
γ0 + γ1(wk

ij − bk−1
i ) + τk

ij

}

1 + exp
{

γ0 + γ1(wk
ij − bk−1

i ) + τk
ij

} , (10)

where τk
ij follows a N(0, σ2

τ ) and (wk
ij − bk−1

i ) is the surplus as before. Hence, pk
ij is a conditional

probability of bidding BIN price if one’s valuation allows one to do so.4

3Note that the random component ζk
ij in the how much model differs from the random component εk

ij in the rate

of bid speed governing the whether, who and when models because the unobserved variables for each model may be

different. We assume independence between these error components, yet its impact is an area for future research.
4We examined other specifications for incorporating BIN. For example, the bidder adjusts her latent bid amount

with pk
ij defined in equation (10) where the mean is now pk

ij · dk
ij . This model, whose results are available from the

authors, fits worse than the proposed model.
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To complete the construction of the how much model, we need to consider two additional cases.

First, when dk
ij is less than Bi in auction i designed with BIN, bidder j can choose a bid amount

less than Bi. Among auctions not designed with BIN, second, an individual bidder can decide any

level of bid amount based on her WTB.

According to our discussion of how much to bid as described above, there are four different

probabilistic expressions to capture how much one bids at each round on an auction which is given

by:

Pr[bk
ij = bk

i ] =





I.
{

Pr[dk
ij ≥ Bi]

}
×

{
pk

ij

}

II.
{

Pr[dk
ij ≥ Bi]

}
×

{
1− pk

ij

}
×

{
φ(bk

i , b
k−1
i , Bi | dk

ij , σ
2
d)

}

III.
{

Pr[dk
ij < Bi]

}
×

{
φ(bk

i , b
k−1
i , Bi | dk

ij , σ
2
d)

}

IV.
{

φ(bk
i , b

k−1
i | dk

ij , σ
2
d)

}

(11)

where φ(z1, z, z | dk
ij , σ

2
d) is the normal density with a mean of dk

ij and a variance of σ2
d, truncated at

z from below and z from above, and φ(z2, z | dk
ij , σ

2
d) is the truncated normal density with a mean of

dk
ij and a variance of σ2

d truncated below by z. The first three expressions in equation (11) consider

three possible cases among auctions designed with BIN: I and II incorporate pk
ij when dk

ij is greater

than Bi, and III represents the bid when dk
ij is less than Bi. Finally, IV in equation (11) deals with

the bid amount for auctions not designed with BIN in which the bidder can bid any amount above

the outstanding bid.

To get the likelihood function of how much to bid, the set of four different probability expressions

in equation (11) can be multiplied across the I auctions, Ki bids and Jk
i bidders:

I∏

i=1

Ki∏

k=1

Jk
i∏

j=1




{
I. Pr[bk

ij = bk
i ]

}Ik
ij [I] ×

{
II. Pr[bk

ij = bk
i ]

}Ik
ij [II]

×
{

III. Pr[bk
ij = bk

i ]
}Ik

ij [III] ×
{

IV. Pr[bk
ij = bk

i ]
}Ik

ij [IV]


 , (12)

where Ik
ij [·] is an indicator function in which Ik

ij [·] is 1 if [·] happens at bid k by bidder j in auction

i, and 0 otherwise.
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In this research, we include the bidding behavior concerning auctions designed with BIN, de-

spite the complications it leads to in equation (11) because bidders in this model have greater

flexibility and auctions with BIN are common as described in section 2. However, we remark that

we incorporate only one form of bidding behavior in BIN auctions through pk
ij among many possible

other types that could drive these decisions. For example, List and Lucking-Reiley (2002) reported

in a field experiment that cognitive costs influence subjects’ bidding behavior, which we leave for

future research, and only consider WTB as a driver as described here.

Taken together, the joint likelihood function of the proposed integrated model is given by:

L = Equation(4)×
{

Equation(6) · Equation(8) · Equation(12)
}

. (13)

3.3 Latent Bidders

As described previously, latent bidders play a prominent role in our model specification in two

specific ways. First, the number of potential bidders (Ji) determines the maximal set of bidders for

which we sum over to compute the total competition set at bid k in auction i. Second, as given in

section 3.2, only those bidders Jk
i (out of the potential set Ji) who have positive surplus (wk

ij > bk−1
i )

are in the race. We describe here in detail both how Ji is selected (including sensitivity analyses

to our assumptions) and moreover the assumptions behind the distribution of wk
ij we utilize, and

distribution of the set of bidders for which surplus is positive.

The more direct issue that we first address is that of the distribution for wk
ij . Simply put, we

desire a set of assumptions that would not be at all restrictive, allowing any potential bidder in the

set of Ji to be in the race, yet would be consistent with a reduced-form utility model. To this end,

we assumed only that the observed bidder at bid k has latent WTB greater than the outstanding

bid bk−1
i , yet for all other potential bidders their WTB could be anywhere, i.e., either less than or

greater than the outstanding bid. We note, for example, a restrictive assumption would be that
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the latent bids at a specific bid are strictly below the outstanding bid. But it is possible that latent

bidders have valuations above the outstanding bid and even above the observed bid, but wait on

the sidelines of the bidding process because they are waiting for an opportune moment to enter. In

fact, there are a variety of reasons for this waiting behavior, e.g., they would like to enter later in

the auction so as to not reveal their preferences or set off a bidding frenzy. While we are agnostic

about what these reasons may be, we believe that by choosing the least restrictive assumption we

have arrived at a reasonable parametric model.

Second, turning to the choice of Ji, we believe that its choice should satisfy the following crite-

rion: (1) We should include bidders from other auctions who are most likely to want to participate

in the focal auction item, but for some reason decide to remain dormant, (2) Our definition needs

to be consistent with the design of the auction site considered here, as in many, which lets site vis-

itors/potential bidders sort the auction items by product characteristics (e.g., CPU speed, brand,

etc.) and then direct them to auctions containing similar items, (3) Our definition needs to be

in line with the strategies auction sites currently use to attract potential bidders (e.g., email a

list of 10 auction items to losers in auctions of similar items) and (4) Potential participants are

drawn from the set of bidders currently on the site, but at different auctions. We note that what

is common across the first three criterion, and is then subsetted using the last one, is the fact that

potential bidders may be assumed to arrive from a set of similar items given they are on the site

during the duration time of Ti for auction i.

We remark that our choice of the set Ji can also be motivated by consumer behavior theories

which suggest that in forming their consideration set, consumers rely on simple heuristics like

eliminating alternatives via categorization of items (e.g., Fader and McAlister 1990, Todd and

Gigerenzer 2000). Therefore, using the route of scanning concurrent and similar auction items for

the definition of latent bidders is consistent both with economic/psychology theory and with the
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auction site’s navigation tools for bidders.

We also note that a few researchers have recently examined the entry process in auctions with the

assumption of symmetric bidders, in which the identity of potential bidders is completely ignored

(e.g., Bajari and Hortaçsu 2003, Bradlow and Park 2004). Hence, our approach can be considered

as a step to identify potential bidders, in our case, based on exact and partially matching notebook

product features.

In order to include latent bidders who are mostly likely to participate in the focal auction item,

we utilize a distance metric (Hoch, Bradlow and Wansink 1999) that allows us to compute the

similarity of auction items, and therefore the set of potential bidders to include in the set Ji. The

way in which our distance metric is computed is as follows. We first turn to any auction that is

open concurrently with the focal auction item. For categorical descriptors of notebooks (CPU type,

brand names, and categorized CPU speed as listed at the auction site), we next look at the set

of items that are an exact match to the given focal item (i.e., lexicographic selectors). For those

variables which are continuous in nature (i.e., MEMORY, HDISK, SCREEN and MONTHS, as

given in Table 1), we utilize a windowing procedure that allows for auctions that vary by as much

as ±10% from the focal item on these features. Extensive empirical testing with smaller (0% =

exact match) and larger windows (±20%) are available upon request however, our findings were

quite robust to this specification.

The ±10% windowing procedure lead to on average 9.9 unique potential bidders per auction.

That said, alternative definitions that are theoretically sound also exist, e.g., defining latent bidders

by looking at budget constraints by focusing on bidders in auctions where the final bid price was

less than and closest to the final bid price of the focal item. We believe that this is an exciting area

for future research.

From a practical standpoint, furthermore, our approach to assessing the set of potential bidders
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can be considered as a useful step for an auction site in developing a better communication (contact)

strategy because our model can infer whether, who, when and how much to bid over the entire

sequence of bids among the potential bidders. Thus, it provides a way to evaluate the “goodness”

(whether) of the listed auctions and the “goodness” (who, when and how much to bid) of the

potential bidders on Internet auctions, which is a fundamental marketing problem faced by auction

sites in advertising auction items and recruiting bidders for their auctions (Wang and Montgomery

2003). Thus, combining the potential list, with the ability to predict across that list can be a

powerful tool.

3.4 The WTB Function

At the heart of our integrated model of bidding behavior lies WTB, wk
ij of person j at bid k in

auction i. The WTB governs the four decisions (whether, who, when and how much) where each

decision is closely linked to the others based on this behavioral construct that leads to an integrated

model. In particular, we assume that each bidder instantaneously decides (renews) wk
ij right after

the (k − 1)-st bid is realized and that wk
ij remains constant until the k-th bid happens.5

In order to infer wk
ij , we employ six sets of explanatory variables: (1) features of auction design,

(2) seller reputation, (3) product specification of an auction item, (4) bidder characteristics, (5)

bid-specific characteristics and (6) an individual bidder’s past bidding experience. That is, wk
ij is

formally modeled as follows:

wk
ij = α0 + φi + ϕj + α′1ADi + α′2SRi + α′3PSi + α′4BCj + α′5RCk

i + α′6EXPk
ij + εk

ij , (14)

where ADi is a vector of variables for design mechanism in auction i, SRi is a vector of variables

for seller reputation in auction i, PSi is a vector of variables for product specification (including
5Prior research has assumed that all the potential bidders are present at the same time and monitoring the auction

throughout the entire time while the auction is open, and are able to revise their bids immediately once a certain bid

is placed (e.g., Reynolds and Wooders 2003 and references cited therein).
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dummy variables for brand names) in auction i, and BCj is a vector of variables for person j’s

characteristics. These auction-specific (with subscript i) and bidder-specific (with subscript j)

variables are provided in Table 1. The random variables in the WTB function are specified as

follows: (1) φi represents unobserved auction-specific characteristics affecting WTB that are iid

across auction items, φi ∼ N(0, σ2
φ), (2) ϕj represents bidder-specific characteristics affecting WTB

that are assumed iid across bidders, ϕj ∼ N(0, σ2
ϕ), and (3) εk

ij represents the unobservable variation

affecting WTB that is iid across auction items, bids and bidders, εk
ij ∼ N(0, σ2

ε).

We also include two sets of time-varying variables (with subscript k), RCk
i and EXPk

ij , in

equation (14) because our model is based on the notion that bidder valuations are evolving over a

series of bids in an auction. These variables are utilized in order to capture the dynamics of bidding

behavior and are described as below:

• RCk
i is a vector of variables for the k-th bid-specific characteristics in auction i: (1) remaining

time to the end of the auction, (2) number of bids submitted before the k-th bid, i.e., (k−1),

(3) bid rate operationalized as (k − 1) divided by the total elapsed time, and (4) rate of bid

increments operationalized as incremental bid amount at the previous round divided by its

elapsed time. These bid-specific variables are abbreviated as REMAIN, NUMBID, BIDRATE,

and AMTRATE, respectively.6

• EXPk
ij is a vector of variables for person j’s past bidding experience at bid k in auction i:

(1) person j’s status (win or loss) on the most recent auction she participated in, (2) total

number of auction wins, (3) total number of auction losses, (4) the amount lost by on the

most recent auction she participated in (0 for the winner). These variables are abbreviated
6BIDRATE and AMTRATE at the first bid are not included in the model estimation because they do not exist

until the second bid. We also note that a number of variables in the model had moderate correlations (above .5). We

assessed whether multi-collinearity was an issue, which was not, by rerunning our model deleting one variable from

each collinear pair.
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as LWIN, TWIN, TLOSS, AMTLOST, respectively.

We note that RCk
i describes the impact of other participants’ bids on the potential bidders, in

terms of the timing of past bids and incremental bid amounts, so that we may understand the

time-varying contextual effects of online auctions. That is, does time remaining to end make items

appear more attractive? Do large jumps on the most recent bid have an effect on bidder valuations?

REMAIN and AMTRATE, respectively, are designed to inform about these dynamics in bidding

behavior.

Furthermore, as noted previously, our database is a panel data set which allows us to include

an individual bidder’s prior bidding experience, i.e., EXPk
ij in equation (14) . We create four

variables to capture the impact of experience in terms of recency (LWIN), frequency (TWIN and

TLOSS) and monetary value (AMTLOST), a so-called RFM framework. Note that we intentionally

make the RFM link in the auction context, as it provides us a rigorous way as how to summarize

past behavior of an individual bidder. While empirical research is very limited in studying the

role of experience in online auctions (e.g., Wilcox 2000), we take a step further to consider it to

uncover whether consumer experience (in terms of recency, frequency and monetary value) drives

the bidding process towards certain outcomes.

3.5 Computational Approach

The main advantages of the Bayesian paradigm, utilized here, are to allow for sharing of information

across auctions for which there is sparse information and to provide small sample exact p-values not

based on asymptotic approximations. Information sharing represents a significant issue for many

of the observed auctions due to the large fraction of auctions with few bids as described in section

2. There were a number of possible ways in which we could incorporate shrinkage. We note that

all parameters, (α0, α′1, . . . , α′6) which govern WTB, (β0 and β1) which govern the rate for bid
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speed, and (γ0 and γ1) which govern the probability of exercising BIN, are given slightly informative

but vague priors, N(0,precision = .00001), to ensure proper posteriors but also to allow the data

to primarily govern the inferences. Sensitivity analysis by varying these precisions indicated no

impact due to their specific choice due to the large sample sizes that are being used here. All

variance components (σ2
ς , σ2

φ, σ2
ϕ, σ2

ε , σ2
ζ , and σ2

d) are given slightly informative inverse-gamma

priors (Gelman et al. 1995), with shape and scale set at .01 to ensure proper posteriors.

Inferences under the proposed model were obtained using the freely available software Bayesian

Inference Using Gibbs Sampling, WinBUGS, which runs a Markov Chain Monte Carlo (MCMC)

sampler to obtain samples from the posterior distribution. Results reported are from the output

of three independent chains started from hyper-dispersed starting values, with a burn-in period

of 20000 iterations and utilizing the 15000 draws (5000 per chain) thereafter. Convergence was

diagnosed both graphically and using the F -statistic diagnostic of Gelman and Rubin (1992). We

note that as this model was fit using WinBUGS, freely available software, this facilitates with ease

the replication (or not) of our findings and its use by practitioners who utilize the software. The

code is available upon request from the authors.

4 Empirical Applications

We utilize our data set on notebook auctions from July to October 2001 to provide an empirical

demonstration of our model. We use the first half of the auction items to initialize an individual

bidder’s past bidding experience, EXPk
ij in equation (14) and the second half of the auctions to

calibrate (and also validate) the proposed model. To allow for shorter MCMC run times, without

loss of generality, we randomly sample 20% of the notebook auctions to obtain model inferences.7

This sampling resulted in 269 in-sample (calibration) auction items in which 30 notebook auctions
7We also ran our model for multiple sub-samples of 10% and our findings are entirely robust.
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have no bids. The total number of bids in these auctions is 2319 bids.

In order to validate the proposed model with the out-of-sample data, we randomly sample 10%

of the notebook auctions which results in 1148 bids across 132 auction items (14 auctions with no

bids). An assessment using exploratory methods indicated that both the calibration and validation

auction items were representative of the total data set described in Table 1 and section 2.

There are three major areas that we report upon in summarizing our results. First, we describe

inferences that can be obtained under the model by looking at summaries of the posterior distrib-

ution for (α0, α′1, . . . , α′6), (β0 and β1), and (γ0 and γ1). Second, we report findings on assessing

the in-sample fit of the model by looking at the posterior predictive distribution (Gelman, Meng

and Stern 1996) of various summaries, as described in our exploratory analyses. Finally, we report

a set of model validations based on the out-of-sample data (auctions).

4.1 Parameter Inferences

Our initial inferences, as given in Table 2, are those derived directly from the parameter estimates

of the model. Presented are findings from the results of three different (plausible) and informative

models. Models 1 and 2 use data only on auctions with bids (i.e., ignore auctions with no bids)

where Model 1 considers only observed bidders and Model 2 includes latent bidders. That is, as a

series of benchmark models, we are interested in whether including latent bidders in the calibration

set would fundamentally change our parameter inferences. In contrast, Model 3 is run on data

including latent bidders and all auctions with and without bids. We find, after checking in a

variety of ways, that estimation results are largely consistent across the three different models.

Hence, given the theoretical completeness of Model 3 for having accounted for latent bidders and

auctions with no bids, we describe detailed findings from Model 3 only.

Insert Table 2 about here
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The major findings suggested are as follows. First, the estimates of most design variables are

significantly associated with WTB. In particular, we find that BIN option (BUYNOW) appears to

reduce WTB, whereas BIN price (BUYBID) tends to have a significant positive effect on WTB.

This is expected because BIN prices on average are lower than the average market prices. We also

observe that MINBID has a very significant positive effect on WTB, in accordance with extant

literature (e.g., Kamins, Drèze and Folkes 2004) and DURATN is negatively associated with WTB,

reflecting that (for our data) the waiting time effect appears to be larger than the arrival process

effect.8

Second, we find that NEGREP has a very significant negative effect on WTB, whereas POS-

REP is not statistically significant. This result is interesting because most research of static bidder

valuations of the final auction price reported that the amount of negative (positive) seller repu-

tation is negatively (positively) associated with the sale price (e.g., Houser and Wooders 2003,

Melnik and Alm 2002). Third, we note very significant positive effects for both PENTIUM and

SPEED, which given their importance in defining notebook computers, is as expected. We also find

significant positive effects for MEMORY, HDISK, and SCREEN and a significant negative effect

for MONTHS.9 Finally, we observe that bidder behavioral characteristics play an important role

in determining WTB. Among the variables of bidder-specific characteristics, VIEW (the extent of

search behavior) is statistically significant. The negative estimate indicates that one’s extensive

search behavior reduces her WTB, and may suggest strategies for Internet auction sellers towards

newer auction participants who have not extensively searched.
8Two contradicting effects, in theory, exist in online auctions on the basis of the auction duration. First, the

waiting time effect implies that a short duration decreases a bidder’s disutility of delay. Second, the arrival process

effect means that a seller who keeps the auction open longer may be more likely to accumulate bidders and hence get

higher bids.
9We do not report results of brand names here, yet they are included in the model.
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We next discuss the parameter estimates of time-varying variables. First, we find that the

estimates of all bid-specific variables except BIDRATE are significantly associated with WTB.

REMAIN (i.e., time-to-end) is negatively related with WTB, which is descriptively consistent with

a last-minute bidding phenomenon often observed at the end of auctions. The positive estimate of

NUMBID is consistent with the notion of herding behavior in the bidding process (e.g., Dholakia

and Soltysinski 2001); that is, after controlling for all other factors, the number of bids submitted is

associated with one’s WTB. These findings indicate that the information in the other participants’

bids has an impact on the bidding process, which will influence subsequent bidding decisions among

the potential bidders.

Second, we find that an individual bidder’s past winning experience (i.e., LWIN and TWIN) are

not statistically significant, which may not be surprising given the nature of consumer electronics

(notebook) used in this research. However, both variables of an individual bidder’s winning experi-

ence could be important in repeatedly purchased product categories such as antiques, collectibles,

travel packages, and etc. in online auctions. In sharp contrast, an individual’s failures (i.e., TLOSS

and AMTLOST) in the past are significantly and negatively associated with her WTB. For instance,

a negative relationship between AMTLOST and the bidder valuations is found, which implies that

the loser at a higher rank (e.g., second highest) on the most recent auction tends to have a higher

WTB if she participates in an auction later. The implications of this suggest that when sellers have

the opportunity to target previous “losers” at a higher rank, they may want to do so, all else equal.

Turning to the relationship between WTB and the rate of bid speed, we note that the coefficient

(β̂1) for (wk
ij−bk−1

i ) is negative, which indicates that if one perceives higher surplus, she is more likely

to bid late in the process, supporting our empirical findings of the last-minute bidding phenomenon.

Table 2 also presents the parameter estimates for pk
ij under the how much model. We find the

coefficient (γ̂1) for (wk
ij − bk−1

i ) is positive, which implies that if one perceives higher surplus,
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conditional on someone’s valuation being above BIN price, she is more likely to end the auction

with BIN price.

4.2 Model Fit

In order to assess whether our proposed model properly captures the key behavioral aspects of

online bidding, and to provide an assessment of the improved fit of Model 3 over Models 1 and 2,

we report results for both in-sample and out-of-sample fit of the models in a number of different

ways. All statistics of the model fit provide strong evidence that the model fits very well in most

aspects. We start with two sets of results for in-sample fit and conclude with out-of-sample fit.

One way in which we assess the in-sample fit of the model is to compute the posterior distribution

of MAPE (mean absolute prediction error) for the following key measures across the iterations of

the MCMC sampler: (1) number of unique bidders per auction, (2) bid submission time, and (3) bid

amount. Our findings indicate that the MAPE of the bid amount improves as potential bidders and

auctions with no bids are included ($55.63, $52.22, and $50.69 for Models 1, 2 and 3, respectively),

reflecting its richer representation. Both the MAPE of the number of bidders per auction (about

1.1) and the MAPE of the bid time (about .26) are largely consistent across the models. These

summary features provide us a rough benchmark as to the quality of in-sample fit of the integrated

model, especially when compared to the average number of observed and latent bidders (5.8 and

9.9), bid time (3.21 days), and bid amount ($762).

We next check the in-sample hit rate of the whether model to see whether the model inference

correctly predicts whether or not the auction will have a bid at all. We find that the hit rate is

85% under Model 3 which is significantly better than chance under random assignment.10 We also

check the in-sample hit rate for auctions with BIN feature. The hit rate metric for BIN auctions
10Since about 11% (i.e., 296 out of 2618 auctions) have no bids in the database, a hit rate under random assignment

is 80%, i.e., 11% · 11% + 89% · 89%.

26



is to see whether the model inference correctly predicts whether or not the bidder bids BIN price

if her valuation allows her to do so. We find that the hit rate is 87% under Model 3. We also note

the model’s performance to predict who the bidder is over the entire sequence of bids in an auction.

Our findings indicate a hit rate of 59% for the who part under Model 3. All of these hit rates are

a very encouraging sign about the validity and managerial usefulness of the model.

A final way in which we assess the quality of the model fit is to look at the bivariate distribution

of predicted values (computed as posterior means across draws) from the model versus observed

values in the out-of-sample data. Figure 1 presents scatterplots of the observed versus fitted values

of the key measures. The solid line represents a perfect fit, whereas the dotted line is the best fit

(least squares) line. Our ability to recover these summaries is generally very high. For the more

interesting/important measures (the number of bidders per auction, whether or not an individual

bidder ever participated in an auction, and the bid amount of how much the bidder would bid if

she participated in the auction), the fit appears to be very good. We note the remarkably high

correlations between observed and predicted values: .98 in the number of bidders per auction, .92

in the bid time and .95 in the bid amount under Model 3.

Insert Figure 1 about here

5 Conclusions and Future Research

We have provided a general framework for modeling bidding behavior in Internet auctions. To

achieve this goal, we have incorporated four key components of bidding behavior, i.e., whether

an auction will have a bid at all, (if so) who has bid, when they have bid and how much they

have bid over the entire sequence of auction bids. The method by which we have examined these

outcomes is through a latent behavioral construct which we denote WTB. Each decision is closely

linked to the others based on this single latent construct that leads to an integrated framework
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with mathematically tractable closed-form solutions. While we acknowledge that more complex,

and albeit realistic, behavioral models could be built, our integrated model is parsimonious and

captures the key behavioral aspects of bidding behavior established in the existing literature on

Internet auctions.

Using a database of notebook auctions directly obtained from an auction company, we have

demonstrated that this general (yet parsimonious) model shows evidence of remarkable performance

in its ability to help us understand and describe online bidding behavior. Beyond the performance

of the model, this research can help shed new light on the important topic of contact strategy in

which an auction site advertises auctioned items and recruits bidders for those products. While

conventional auction theory states that the profitability of an auction is positively related to the

number of bidders, Wang and Montgomery (2003) show that too much advertising by the auction

site can reduce a bidder’s satisfaction and subsequent retention in future auctions, which lowers

the profits of the auction site. Since our model can provide a way to evaluate the “goodness”

(whether) of the listed auction items and the “goodness” (who, when and how much to bid) of

potential bidders on an auctioned item, our research can be considered as a very useful step for

deriving better communication strategies for auction sites.

Since this research is among the first attempts to investigate the behavioral aspects of the

bidding process over a series of bids in Internet auctions, we have kept the model as simple as

possible to highlight the key behavioral phenomena that we have identified. Naturally, there are

several limitations in the proposed model that should be acknowledged and perhaps addressed in

future research. First, we have estimated our model for notebook auctions in which our results

could be reflective of the product category. We hope our model provides a framework for further

empirical exploration in other product categories (e.g., collectibles).

Second, as noted in section 2, the data considered here is from ascending first-price auctions.
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This choice by the site, in contrast to second-price auctions used at eBay, has been under much

discussion in the auction literature (e.g., Lucking-Reiley 1999) and more recently by Bajari and

Hortaçsu (2004). With that in mind, the empirical findings reported here should be thought more

of as suggestive than in any way definitive and worth further exploration in future research. Yet, we

hope our model provides a framework for future empirical exploration. Third, the model developed

here is descriptive and exploratory in nature and is not based on theoretical assumptions of auction

behavior and equilibria in the extant economic literature applied to auctions (e.g., Donald and

Paarsch 1996, Guerre, Perrigne and Vuong 2000, Laffont, Ossard and Vuong 1995). The dynamic

model employed here might provide some insight to those working in this area such that even richer

theoretical models can be developed.

While the focus of this paper has been on providing an integrated stochastic dynamic model for

Internet auctions useful for description and prediction, models such as the one developed here are

commonly used for managerial optimization. That is, since many of the variables incorporated in

WTB are under the control of the seller, one could try and optimize auction profits as a function

of seller’s design. While we wholeheartedly agree that this would be a valuable way to apply our

model, we do not present such findings here because many of the auction design variables may well

be endogenously set on the part of the seller and hence a richer model where the seller’s variables

may be strategically set is needed.

Nevertheless, all is not lost. One could incorporate into the model knowledge of how a seller

designs an auction, thus allowing optimization decisions; albeit, such an approach would require

careful work as to the nature of strategic bidding behavior. Fortunately, models which incorporate

endogenously set variables directly into the likelihood (Manchanda, Rossi and Chintagunta 2004)

are starting to emerge and present an important solution allowing for optimization. Thus, we hope

that our research serves as a building block model for which important optimization decisions can
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be made in Internet auctions.

Finally, it is important to recognize that while a fundamental understanding of the “why”

in bidding behavior is still left somewhat unknown, there are numerous aspects of the research

that are novel and extend the auction literature: (1) an integrated probabilistic framework which

allows us to forecast all four (whether, who, when and how much) modules of Internet auction

behavior simultaneously, (2) a dynamic model that focuses on intermediary outcomes, for which

final outcomes are but a result, (3) the inclusion of cross-auction panel variables that allows us

to explore the impact of previous wins/losses and their amounts on current bidding behavior, and

(4) a parsimonious model which allows the inference of a latent competition set from the observed

data. With this general structure in place, our hope is that this paper serves as a call for much

more extensive empirical study of the application of probabilistic models to auction data, both

first-price and otherwise.
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Appendix

Let tki1, . . . , tk
iJk

i
be independent random variables, with tkij having an exponential distribution with

rate λk
ij . One critical aspect of our modeling approach is that the minimum of a set of exponentials

is exponentially distributed with rate equal to the sum of the rates:

Pr[min(tki1, . . . , t
k
iJk

i
) > t] = Pr[tki1 > t, . . . , tk

iJk
i

> t]

= Pr[tki1 > t] · · ·Pr[tk
iJk

i
> t]

= e−λk
i1t · · · e−λk

iJk
i

t

= e−(
PJk

i
j=1 λk

ij)t

Without loss of generality, we do not take out the current rate of bid speed by the previous bidder

here in the derivation, but do so in the text. The preceding shows that the CDF of min(tkij , ∀j ∈ Jk
i )

is that of an exponential distribution with rate equal to
∑Jk

i
j=1 λk

ij . Thus, the when model can be

derived based on the truncated exponential distribution.

We next derive the model of who has bid at bid k in auction i among the total of the Jk
i bidders:

Pr[min(tkij) = tkij | tk−1
i < min(tkij) ≤ Ti , ∀j ∈ Jk

i ]

= Pr[tkij < tkijc ,∀jc 6= j | tk−1
i < min(tkij) ≤ Ti , ∀j ∈ Jk

i ]

=
∫ Ti

tk−1
i





Pr[tkij < tkijc , ∀jc 6= j | tkij = t, tk−1
i < min(tkij) ≤ Ti , ∀j ∈ Jk

i ]

×

f(tkij = t | tk−1
i < min(tkij) ≤ Ti ,∀j)





dt

=
∫ Ti

tk−1
i

Pr[t < tkijc , ∀jc 6= j]× λk
ij e−λk

ij t

1− e
−(λk

i1+λk
i2+...+λk

iJk
i

)·(Ti−tk−1
i )

dt

=
∫ Ti

tk−1
i

Jk
i∏

jc=1,jc 6=j

e−λk
ijc t × λk

ij e−λk
ij t

1− e−(
PJk

i
j=1 λk

ij) ·(Ti−tk−1
i )

dt

=
λk

ij

1− e−(
PJk

i
j=1 λk

ij) (Ti−tk−1
i )

∫ Ti

tk−1
i

e−(
PJk

i
j=1 λk

ij) t dt

=
λk

ij
∑Jk

i
j=1 λk

ij

.
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Variables Abbreviation Mean Std.
Auction design

Product image (Yes = 1, No = 0) IMAGE 0.6
Minimum bid (dollars) MINBID 713 650
BIN option (Yes = 1, No = 0) BUYNOW 0.9
BIN price (dollars) BUYBID 1195 635
Duration (days) DURATN 5.4 2.7

Seller reputation
Number of positive ratings POSREP 1.7 15.5
Number of negative ratings NEGREP 0.2 3.6

Product specification
CPU (Pentium = 1, Celeron = 0) PENTIUM 0.8
CPU speed (mhz) SPEED 534 220
Memory (megabytes) MEMORY 118 60
Hard disk (gigabytes) HDISK 12 7
Screen size (inches) SCREEN 12.9 1.2
Number of months for use MONTHS 9.6 9.9

Bidder characteristics
Gender (Male = 1, Female = 0) MALE 0.8
Age AGE 31 8
Cumulative site visits VISIT 99 230
Cumulative page views VIEW 505 1156

Notes: Brand names are not included.

Table 1: Data Description
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Variables Model 1 Model 2 Model 3
wk

ij INTERCEPT .64∗ .72∗ .90∗

ADi

IMAGE .02 .02 .04
MINBID .61∗ .55∗ .39∗

BUYNOW -1.69∗ -1.67∗ -1.66∗

BUYBID .04∗ .21∗ .31∗

DURATN -.13∗ -.13∗ -.15∗

SRi

POSREP .09 .10 .10
NEGREP -.21∗ -.13∗ -.14∗

PSi

PENTIUM 1.51∗ 1.43∗ 1.37∗

SPEED .99∗ .98∗ .98∗

MEMORY .20∗ .19∗ .19∗

HDISK .14∗ .13∗ .13∗

SCREEN .24∗ .23∗ .22∗

MONTHS -.11∗ -.08∗ -.04∗

BCj

MALE .03 .02 .02
AGE .02 .02 -.04
VISIT -.03 -.03 -.03
VIEW -.03∗ -.03∗ -.04∗

RCk
i

REMAIN -1.20∗ -1.31∗ -1.53∗

NUMBID .01∗ .01∗ .02∗

BIDRATE .36 .40 .48
AMTRATE -.08∗ -.11∗ -.13∗

EXPk
ij

LWIN -.07 -.07 -.07
TWIN -.01 -.01 -.02
TLOSS -.03∗ -.03∗ -.03∗

AMTLOST -.02∗ -.03∗ -.03∗

log(λk
ij) INTERCEPT 6.07∗ 7.35∗ 9.21∗

(wk
ij − bk−1

i ) -.67∗ -.74∗ -.91∗

pk
ij INTERCEPT -12.24∗ -12.01∗ -11.97∗

(wk
ij − bk−1

i ) 1.87∗ 1.57∗ 1.48∗

Notes: 1. Parameter estimates for brand names are not included.
2. * indicates that zero lies outside of the 95% posterior interval.

Table 2: Posterior Means of Coefficient Estimates
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